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About me

• Eng + PhD ENSEEIHT, 2004
• Computer vision

• 10 years at INRIA
• image/video matching
• large-scale 3D reconstruction

• Facebook since 2015
• similarity search
• knn-graphs (clustering, low-shot learning)
• unsupervised learning
• video alignment 
• neural net memorization
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Facebook AI Research

Values:
• Openness: publish and open-source
• Freedom: researchers have complete 

control on their agenda 
• Collaboration: with internal and 

external partners
• Excellence: focus on most impactful 

projects (publish or perish)
• Scale: operate at large scale 

(computation, data)

•Created in 2013 by Yann Le Cun
•Fundamental, open and collaborative research
•160+ people: 50/40/10 scientists/engineers/
students

Locations:
• Menlo Park (HQ of Facebook) [2014]
• NYC [2014]
• Paris [2015] + London [2018]
• Montreal [2017]
• Pittsburgh [2018]
• Seattle [2018]
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A man riding a wave on a 
surfboard in the water.

A giraffe standing on  
the grass next to a tree.



An airplane is parked on the 
tarmac at an airport. A man riding a 

motorcycle on a beach.



DR QA

READING WIKIPEDIA

 Dr. QA   

Reading Wikipedia to answer open-domain questions 
Chen, Fisch, Weston & Bordes [2017]
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GETTING AN INTUITION OF PHYSICS



PREDICTING FUTURE FRAMES



PREDICTING FUTURE FRAMES



DesIGN: Design Inspiration from Generative Networks.  
Sbai, Couprie, Elhoseiny, Bordes & LeCun [2018]
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Supervised learning: the Imagenet case
• training set: a large and balanced set of 

positive examples, labelled 
unambiguously
• excellent testbed for the improvement of 

image classification algorithms
• leap forward in 2010-2015 
• see this morning's presentation

• now: more or less solved

[ConvNets and ImageNet Beyond Accuracy: Understanding 
Mistakes and Uncovering Biases, Pierre Stock, Moustapha 
Cisse, ArXiv 2017]



• Getting many images is not a problem

• Manual annotation: an endeavor
• millions of images
• several opinions
• quality control...

• AI powered by... Human intelligence

• How can we reduce the level of 
supervision?

Supervised learning
Behind the scenes



• Noisy supervision: learn from hashtags -- 
scale up to 3B images

• Weak supervision: object detector with only 
image-level supervision

• Low-shot learning: train from few images 
per class

• Zero-shot learning: learn from metadata, eg. 
a description rather than examples

Less supervised learning
8 Mahajan et al.

Target task: ImageNet-1k Target task: ImageNet-5k

Target task: ImageNet-9k Target task: CUB2011

Fig. 2: Classification accuracies on IN-{1k, 5k, 9k} and CUB2011 target tasks as a
function of the number of Instagram images used for pretraining for three network
architectures (colors) and two hashtag vocabularies (dashed / solid lines). Only the
linear classifier is trained on the target task. Higher is better.

masked by the large amount of finetuning data (this was not the case in the pre-
vious experiment where the source task had orders of magnitude more images).

Figure 2 shows the classification accuracy on ImageNet validation sets (y-
axis) as a function of the number of Instagram training images (x-axis; note
the log scale) ranging from 3.5M to 3.5B images. The figure shows results for
models pretrained to predict 1.5k hashtags (dashed lines) or 17k hashtags (solid
lines) for ResNeXt-101 models with three different capacities (represented by
different colors).1 The four panels correspond to ImageNet target tasks with
three different number of classes (1k, 5k, 9k) and CUB2011.

In line with prior results [16,17], we observe near log-linear behavior: each
time we multiply the amount of training data by a factor of x, we observe a
fixed increase y in classification accuracy. While the scaling behavior is con-

1 The maximum number of images available for the 1.5k hashtag set is 940M.

[Exploring the Limits of Weakly Supervised 
Pretraining, Dhruv Mahajan, Ross 
Girshick, Vignesh Ramanathan, Kaiming 
He, Manohar Paluri, Yixuan Li, Ashwin 

[ Low-Shot Visual Recognition by Shrinking and 
Hallucinating Features. B Hariharan, RB Girshick - ICCV, 

[ An embarrassingly simple approach to zero-shot learning, 
Bernardino Romera-Paredes, Philip H. S. Torr, ICML'15]



Embeddings

Post embedding

User embedding
Image

Embedding
(CNN layer)

Face embedding
Video

embedding

Text embedding  
(word2vec,
fastText)

Relationship
embedding

typical: d=100-1000 (dense)



Comparing embeddings
• Using the distance between embeddings
• should be a measure of semantic similarity

• the k-nearest neighbor classifier
• in the following: 2 works on reducing supervision 

using similarity search



Indexing embeddings
Build index for a collection:

Query:

Criteria: compact, fast, accurate
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Low-shot learning
[Low-shot learning with large-scale diffusion, 
Douze, Szlam, Hariharan, Jégou, CVPR'18]
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• Assume we have only 1,2, ..10 training images per class
• Too little data to effectively train a CNN

• Typical approach: transfer learning
• train an embedding on other classes 
• SVM or logistic regression classifier on top of the 

embeddings

Problem setup



Diffusion on a knn-graph

Figure 1: The diffusion setup. The arrows
indicate the direction of diffusion. No diffu-
sion is performed from the test, for the rest
of the graph the edges are bidirectional (ie.
the graph matrix is symmetric). Except men-
tioned otherwise, the edges have no weights.

of quadratic complexity in the number of images. In this paper, we employ the Faiss library,which
was shown capable to construct a graph connecting up to 1 billion vectors [23].

3 Propagating labels

This section describes the initial stage of our proposal, which estimates the class of the unlabelled
images with a diffusion process. It includes an image description step, the construction of a kNN
graph connecting similar images, and a label diffusion algorithm.

3.1 Image description

A meaningful semantic image representation and an associated metric is required to match instances
of classes that have not been seen beforehand. While early works on semi-supervised labelling [14]
were using ad-hoc semantic global descriptors like GIST [29], the classification performance has
substantially improved in the last years with deep CNN architectures [34, 18], which are a compelling
choice for our purpose. Therefore, for the image description, we extract activation maps from a CNN
trained from base classes that are independent from the novel classes on which the evaluation is
performed. See the experimental section for more details about the training process for descriptors.

The mean class classifier introduced for low-shot learning [28] is another way to perform dimension-
ality reduction while improving accuracy thanks to a better comparison metric. We do not consider
this approach since it can be seen as part of the descriptor learning.

3.2 Affinity matrix: approximate kNN graph

As discussed in the related work, most diffusion processes use as input the kNN graph representing
the N ⇥N sparse similarity matrix, denoted by W, which connects the N images of the collection.
We build this graph using approximate k-nearest neighbor search. Thanks to recent advances in
efficient similarity search [10, 23], trading some accuracy against efficiency drastically improves the
graph construction time. As an example, with the FAISS library [23], building the graph associated
with 600k images takes 2 minutes on 1 GPU. From preliminary experiments, the approximation in the
knn-graph construction does not induce any sub-optimality, possibly because the diffusion process
compensates the artifacts induced by the approximation.

Different strategies exist to set the weights of the affinity matrix W. We choose to search the k
nearest neighbors of each image, and set a 1 for each of the neighbors in the corresponding row of a
sparse matrix W0. Then we symmetrize the matrix by adding it to its transpose. We subsequently
`1-normalize the rows to produce a sparse stochastic matrix: W = D�1(W>

0 +W0), with D the
diagonal matrix of row sums.

The handling for the test points is different: test points do not participate in label propagation because
we classify each of them independently of the others. Therefore, there are no outgoing edges on test
points, they only get incoming edges from their k nearest neighbors.

3.3 Label propagation

We now give details about the diffusion process itself, which is summarized in Figure 1. We
build on the straightforward label propagation algorithm of [41]. The set of images on which we
perform diffusion is composed of nL labelled seed images and nB unlabelled background images

3

• We have:
• a large set of background images
• semantic embeddings for the 

images 

• knn-graph
• nodes = images
• edges = links to the k nearest 

images



• matrix symmetrized and row-normalized
• no normalizations necessary during diffusion
• L1-normalize the L vector at the end of iterations

• early stopping (validated parameter)
• Can be performed on all classes at once 
• sparse matrix - dense martrix multiplications

Diffusion on a knn-graph

Li+1 =


WLL WLB

WBL WBB

�
⇥ LiL0 =

2

664

1
1
0
0

3

775

Matrix view

Gaussian weighting meaningful neighbors model
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Figure 3: Evaluation of edge weighting (top) and matrix normalizations (bottom) used in the
diffusion. The common settings are: k = 30, n = 2, evaluation is averaged over 5 runs on the
validation set (group 1), and we select the best iteration.

C Analysis of the diffusion process

In our paper we analyze the performance attained along iterations. In this section we complement
this analysis by providing the rate of nodes reached by the diffusion process: we consider very large
graphs, few seeds and a relatively small graph degree. While the graph is not necessarilly fully
connected, we observe that most images can be reached by all labels in practice. Figure 4 measures
the sparsity of the matrix L (on one run of validation), which indicates the rate of (label, image)
tuples that have not been attained by the diffusion process at each diffusion step.
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Figure 4: Rate of non-zero element in the matrix L, for n = 2 and a varying degree.

The number of nodes reached by all labels grows rapidly and converges to a value close to 1 in only a
few iterations when k � 10. We have generally observed that the iteration number at which the matrix
closen to 1 is similar to the iteration at which accuracy is maximal, as selected by cross-validation.
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Visualize 

LOW-SHOT LEARNING WITH LARGE-SCALE DIFFUSION
Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou

Facebook AI research & Cornell University

Context

� CNN-based classification is SoA with plenty of training data
� What if there are few images per class? Overfitting!
� Classical workarounds:
–logistic regression on CNN features trained elsewhere.
–label propagation [1]

Our method & Take-home message

� scalable construction of a knn-graph with high-level CNN features
� diffusion of labels from labelled images to unlabelled images

Contributions:

� label propagation done at an unprecedented scale (100M images)
� it combines well with logistic regression on CNN features
� we outperform the state of the art in some settings

The knn-graph

Input: nL labelled seed images
+ nB unlabelled background images (N = nL + nB).

� Each image is linked with its k nearest neighbors in embedding
space. Distances are not used ! the graph matrix is W0 2 {0, 1}N⇥N .
� The graph is symmetrized, and rows are normalized as

W = D�1(W>
0 +W0),

with D the diagonal matrix of row sums.

Output graph matrix: W 2 RN⇥N , sparse.

Test images have incoming edges only: no train/test contamination.

The diffusion process

Diffusion state: matrix L 2 RN⇥C, with C = number of classes.

Diffusion process:
� initialize L0 to a binary matrix:
! element (i, j) is 1 if i  nL has label j, else 0
� iterate: Lt+1 = WLt

� early stopping at a fixed number of iterations T
� per column normalization:

Lnorm = LTD
�1,

where D 2 RC is the diagonal matrix of column sums

Classification scores:

� train images: we use the corresponding line of Lnorm for all images.
� test images: the average vector of the images they are connected to

Computational constraints

We compute W0:

W0 =


WLL WLB

WBLWBB

�
2 {0, 1}(nL+nB)⇥(nL+nB)

� WBB 2 {0, 1}nB⇥nB is computed off-line using GPU Faiss
! This is dataset pre-processing step, not done at test time
� WLB, WBL and WBB are computed on-line
� WBL must be combined with WBB to ensure there are exactly k
nearest neighbors per line.

The diffusion relies on sparse-dense matrix-matrix products:
� The main constraint is storing the Lt iterates
� We slice L into groups of columns to fit in RAM

Overall timings (CPU only):

background none F1M F10M F100M
optimal iteration T 2 3 4 5
timing: graph completion 2m57s 8m36s 40m41s 4h08m
timing: diffusion 4.4s 19s 3m44s 54m

Code

https://github.com/facebookresearch/low-shot-with-diffusion

Experimental setup: low-shot scenario [3]

� Imagenet 2012 classes are split into:
base classes novel classes

group (full training) (low-shot) purpose
1 193 300 hyper-param tuning
2 196 311 evaluation

� For the novel classes only n training images per class are available
� Evaluation: top-5 classification performance on Imagenet valida-
tion of the base+novel classes of group 2
� Background set: 0, 1M, 10M or 100M images from YFCC100M [2]

Image embeddings:
� Resnet-50 trained on all base classes (group 1 + group 2)
� 2048-dim activation before classification layer ! PCA to 256D

Comparison with other works

background size nB logistic diffusion+logistic “in-domain” [3]
n none 1M 10M 100M regression +F10M + F100M diffusion
1 58.5 61.4 62.7 63.6 60.4 63.3 64.0 69.7 63.6
2 63.6 66.8 68.4 69.5 68.8 70.6 71.1 75.4 71.5

5 69.0 72.5 74.0 75.2 79.1 79.4 79.7 79.9 80.0

10 73.9 76.2 77.4 78.5 83.4 83.6 83.9 82.1 83.3
20 78.0 79.1 80.0 80.8 86.0 86.2 86.3 83.6 85.2

� competitive with SOTA for a small number of vectors
� in the “in-domain”, very large improvement due to the knowledge
of the class probability priors

Parametric experiments

� k = 30 is a good setting for all sizes
� early stopping is important, T = 6 is optimal for nB =100M.

Diffusion path examples

For visualization, we backtrack from the final classification value by
following the strongest classification score.

Cases where diffusion outputs the right class:

triumphal arch – – – – – – (triumphal arch)

koala – koala koala – – – (koala)

jack-o’-lantern – jack-o’-lantern – – – – (jack-o’-lantern)

Failure cases – correct path first, and path produced by the method:

planetarium – planetarium – – – – (planetarium)

mosque mosque mosque – mosque – – (planetarium)

woolen – woolen – – sock – (woolen)

sock sock sock – – – – (woolen)

References

[1] X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2009.

[2] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li.
YFCC100M: The new data in multimedia research. Communications of the ACM, 2016.

[3] B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating fea-
tures. In ICCV, 2017.

• Visualization of 
the strongest 
path
• starting from the 

target images
• follow strongest 

edges



Results 

out-of-domain di↵usion in-domain logistic combined [16]
n none F1M F10M F100M Imagenet regression +F10M + F100M
1 57.1 60.0 61.4 62.3 68.0 57.3 62.0 62.6 60.6
2 62.5 65.5 66.8 67.8 73.2 66.0 68.7 69.2 68.9
5 68.4 70.6 71.9 73.1 77.8 76.4 76.9 77.4 77.3
10 72.7 74.2 75.3 76.2 80.1 80.9 81.3 81.5 80.6
20 76.0 77.0 77.5 78.6 81.4 83.7 83.9 84.1 82.5

• classification performance on a subset of ImageNet classes, with few 
(n=1..20) training images



Results 

background none F1M imnet
edge weighting

constant 62.7±0.68 65.4±0.55 73.3±0.72

Gaussian weighting* 62.7±0.66 65.4±0.58 73.6±0.71

meaningful neighbors* 62.7±0.68 40.0±0.20 73.6±0.62

⌘ operator

none 40.6±0.18 41.1±0.10 42.3±0.19

Sinkhorn 61.1±0.69 56.8±0.50 72.3±0.72

column-wise 62.7±0.68 65.4±0.55 73.3±0.72

non-linear transform* �r 62.7±0.68 65.4±0.55 73.3±0.72

class frequency prior* 62.7±0.66 65.4±0.60 73.3±0.65

Table 1: Variations on weighting for edges and normalization steps on iterates of L. The tests are
performed for n = 2 and k = 30, with 5 runs on the group 1 validation images. Variants that require
a parameter (e.g., the � of the Gaussian weighting) are indicated with a “*”. In this case we report
only the best result, see Appendix B material for full results. In the rest of the paper, we use the
variants indicated in bold, since they are simple and do not add any parameter.
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Figure 2: Classification performance with n = 2 — Left: accuracy as a function of the iteration —
Right: various settings of k and nB, ordered by total number of edges (average of 5 test runs, with
cross-validated number of iterations). Appendix E material provides a complementary analysis.

4.3 Large-scale diffusion

Figure 2 reports experiments by varying the number of background images nB and the number k
of neighbors, for n = 2. In Appendix C, we also show how fast L “fills up” (it is dense after a few
iterations). The maximum in accuracy is also reached quickly. This maximum accuracy occurs later
if nB is larger and when k is smaller. The plot also shows that it is important to do early stopping.

The plot on the right reports the large-scale behavior of the diffusion. All the curves have an optimal
point in terms of accuracy vs computational cost at k=30. This may be a intrinsic property of
the descriptor manifold. It is worthwhile to note that before starting the diffusion iterations, with
k=1000 and no background images (the best setting) we obtain an accuracy of 60.5%. This is a
knn-classifier and this is the fastest setting because the knn-graph does not need to be constructed.
Another advantage is that it does not require to store the graph.

4.4 Complexity: Runtime and memory

We measured the runtime of the diffusion process on a 48-core 2.5GHz machine:

background none F1M F10M F100M
optimal iteration 2 3 4 5
timing: graph completion 2m57s 8m36s 40m41s 4h08m ! 23m on 8 GPUs
timing: diffusion 4.4s 19s 3m44s 54m
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• runtime depends on 
number of edges

• graph completion is 
slow

• useful in practice?



Deep clustering
[Deep Clustering for Unsupervised Learning of Visual Features, 

Caron, Bojanowski, Joulin, Douze, ECCV'18]



• Given many unlabeled images, find an embedding

• How can we check whether the embedding is good?
• fine-tune the convnet on another dataset that has fewer images (Pascal VOC)
• see how it performs

• Related work:
• invariance to data aguentation
• pretext tasks: counting, patch layout 

prediction  
[Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, Noroozi & Favaro, ECCV'16]

Unsupervised feature learning
Experimental context



• random initialization of the convnet
• Iterate
• k-means clustering of descriptors
• train convnet to predict the clusters
• relies on the convolutional structure of the feature extraction

Our approach

2 Mathilde Caron et al .

Input

Pseudo-labels

Classification

Clustering

Convnet

Fig. 1: Illustration of the proposed method: we iteratively cluster deep features
and use the cluster assignments as pseudo-labels to learn the parameters of the
convnet.

Unsupervised learning has been widely studied in the Machine Learning com-
munity [12], and algorithms for clustering, dimensionality reduction or density
estimation are regularly used in computer vision applications [13–15]. For exam-
ple, the “bag of features” model uses clustering on handcrafted local descriptors
to produce good image-level features [16]. A key reason for their success is that
they can be applied on any specific domain or dataset, like satellite or medical
images, or on images captured with a new modality, like depth, where anno-
tations are not always available in quantity. Several works have shown that it
was possible to adapt unsupervised methods based on density estimation or di-
mensionality reduction to deep models [17, 18], leading to promising all-purpose
visual features [19, 20]. Despite the primeval success of clustering approaches in
image classification, very few works [21, 22] have been proposed to adapt them
to the end-to-end training of convnets, and never at scale. An issue is that clus-
tering methods have been primarily designed for linear models on top of fixed
features, and they scarcely work if the features have to be learned simultaneously.
For example, learning a convnet with k-means would lead to a trivial solution
where the features are zeroed, and the clusters are collapsed into a single entity.

In this work, we propose a novel clustering approach for the large scale end-
to-end training of convnets. We show that it is possible to obtain useful general-
purpose visual features with a clustering framework. Our approach, summarized
in Figure 1, consists in alternating between clustering of the image descriptors
and updating the weights of the convnet by predicting the cluster assignments.
For simplicity, we focus our study on k-means, but other clustering approaches
can be used, like Power Iteration Clustering (PIC) [23]. The overall pipeline is
su�ciently close to the standard supervised training of a convnet to reuse many
common tricks [24]. Unlike self-supervised methods [25–27], clustering has the
advantage of requiring little domain knowledge and no specific signal from the
inputs [28, 29]. Despite its simplicity, our approach achieves significantly higher
performance than previously published unsupervised methods on both ImageNet
classification and transfer tasks.

Finally, we probe the robustness of our framework by modifying the exper-
imental protocol, in particular the training set and the convnet architecture.

Keep it simple!



• convergence in ~300 epochs
• Sobel filter
• data augmentation 
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(a) Clustering quality (b) Cluster reassignment (c) Influence of k

Fig. 2: Preliminary studies. (a): evolution of the clustering quality along train-
ing epochs; (b): evolution of cluster reassignments at each clustering step; (c):
validation mAP classification performance for various choices of k.

Training data. We train DeepCluster on ImageNet [6] unless mentioned oth-
erwise. It contains 1.3M images uniformly distributed into 1, 000 classes. We
discard the labels.

Optimization.We use standard image preprocessing and data augmentation [54],
dropout [62], a constant step size, an `2 penalization of the weights ✓ and a mo-
mentum of 0.9. Each mini-batch contains 256 images. For the clustering, features
are PCA-reduced to 256 dimensions, whitened and `2-normalized. We use the
k-means implementation of Johnson et al . [60]. We train the models for 500
epochs, which takes 12 days on a Pascal P100 GPU for AlexNet.

Hyperparameter selection. We select hyperparameters on a down-stream
task, i.e., object classification on the validation set of Pascal VOC with no
fine-tuning. We use the publicly available code of Krähenbühl1.

4 Experiments

In a preliminary set of experiments, we study the behavior of DeepCluster dur-
ing training. We then qualitatively assess the filters learned with DeepCluster
before comparing our approach to previous state-of-the-art models on standard
benchmarks.

4.1 Preliminary study

We measure the information shared between two di↵erent assignments A and B
of the same data by the Normalized Mutual Information (NMI), defined as:

NMI(A;B) =
I(A;B)p
H(A)H(B)

1 https://github.com/philkr/voc-classification



Visualization
• Direct visualization of the first convolutional filters
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Fig. 3: Filters from the first layer of an AlexNet trained on unsupervised Ima-
geNet on raw RGB input (left) or after a Sobel filtering (right).

where I denotes the mutual information and H the entropy. This measure can
be applied to any assignment coming from the clusters or the true labels. If the
two assignments A and B are independent, the NMI is equal to 0. If one of them
is deterministically predictable from the other, the NMI is equal to 1.

Relation between clusters and labels. Figure 2(a) shows the evolution of
the NMI between the cluster assignments and the ImageNet labels during train-
ing. It measures the capability of the model to predict class level information.
Note that we only use this measure for this analysis and not in any model se-
lection process. The dependence between the clusters and the labels increases
over time, showing that our features progressively capture information related
to object classes.

Number of reassignments between epochs. At each epoch, we reassign the
images to a new set of clusters, with no guarantee of stability. Measuring the
NMI between the clusters at epoch t � 1 and t gives an insight on the actual
stability of our model. Figure 2(b) shows the evolution of this measure during
training. The NMI is increasing, meaning that there are less and less reassign-
ments and the clusters are stabilizing over time. However, NMI saturates below
0.8, meaning that a significant fraction of images are regularly reassigned be-
tween epochs. In practice, this has no impact on the training and the models do
not diverge.

Choosing the number of clusters.We measure the impact of the number k of
clusters used in k-means on the quality of the model. We report the same down-
stream task as in the hyperparameter selection process, i.e. mAP on the Pascal
VOC 2007 classification validation set. We vary k on a logarithmic scale, and
report results after 300 epochs in Figure 2(c). The performance after the same
number of epochs for every k may not be directly comparable, but it reflects
the hyper-parameter selection process used in this work. The best performance
is obtained with k = 10, 000. Given that we train our model on ImageNet, one
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Filter 0 Filter 33 Filter 145 Filter 194

Filter 97 Filter 116 Filter 119 Filter 182

Fig. 5: Top 9 activated images from a random subset of 10 millions images from
YFCC100M for target filters in the last convolutional layer. The top row cor-
responds to filters sensitive to activations by images containing objects. The
bottom row exhibits filters more sensitive to stylistic e↵ects. For instance, the
filters 119 and 182 seem to be respectively excited by background blur and depth
of field e↵ects.

4.3 Linear classification on activations

Following Zhang et al . [43], we train a linear classifier on top of di↵erent frozen
convolutional layers. This layer by layer comparison with supervised features
exhibits where a convnet starts to be task specific, i.e. specialized in object
classification. We report the results of this experiment on ImageNet and the
Places dataset [67] in Table 1. We choose the hyperparameters by cross-validation
on the training set. On ImageNet, DeepCluster outperforms the state of the art
from conv2 to conv5 layers by 1�4%. The largest improvement is observed in the
conv3 layer, while the conv1 layer performs poorly, probably because the Sobel
filtering discards color. Consistently with the filter visualizations of Sec. 4.2,
conv3 works better than conv5. Finally, the di↵erence of performance between
DeepCluster and a supervised AlexNet grows significantly on higher layers: at
layers conv2-conv3 the di↵erence is only around 4%, but this di↵erence rises
to 15% at conv5, marking where the AlexNet probably stores most of the class
level information. In the supplementary material, we also report the accuracy if
a MLP is trained on the last layer; DeepCluster outperforms the state of the art
by 8%.

The same experiment on the Places dataset provides some interesting in-
sights: like DeepCluster, a supervised model trained on ImageNet su↵ers from
a decrease of performance for higher layers (conv4 versus conv5). Moreover,

• strongest images for some filters (last convolutional 
layer)



• Image classification performance when using 
features at a certain level of the network
• variants: 
• use images from  

Imagenet vs. Flickr
• use power iteration  

clustering vs. k-means
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Classification Detection Segmentation

Method fc6-8 all fc6-8 all fc6-8 all

ImageNet labels 78.9 79.9 – 56.8 – 48.0
Random-rgb 33.2 57.0 22.2 44.5 15.2 30.1
Random-sobel 29.0 61.9 18.9 47.9 13.0 32.0

Pathak et al . [38] 34.6 56.5 – 44.5 – 29.7
Donahue et al . [20]⇤ 52.3 60.1 – 46.9 – 35.2
Pathak et al . [27] – 61.0 – 52.2 – –
Owens et al . [44]⇤ 52.3 61.3 – – – –
Wang and Gupta [29]⇤ 55.6 63.1 32.8† 47.2 26.0† 35.4†

Doersch et al . [25]⇤ 55.1 65.3 – 51.1 – –
Bojanowski and Joulin [19]⇤ 56.7 65.3 33.7† 49.4 26.7† 37.1†

Zhang et al . [28]⇤ 61.5 65.9 43.4† 46.9 35.8† 35.6
Zhang et al . [43]⇤ 63.0 67.1 – 46.7 – 36.0
Noroozi and Favaro [26] – 67.6 – 53.2 – 37.6
Noroozi et al . [45] – 67.7 – 51.4 – 36.6

DeepCluster 72.0 73.7 51.4 55.4 43.2 45.1

Table 2: Comparison of the proposed approach to state-of-the-art unsupervised
feature learning on classification, detection and segmentation on Pascal VOC.
⇤ indicates the use of the data-dependent initialization of Krähenbühl et al . [68].
Numbers for other methods produced by us are marked with a †.

poorly if only fc6-8 are learned. For this reason, we also report detection and
segmentation with fc6-8 for DeepCluster and a few baselines. These tasks are
closer to a real application where fine-tuning is not possible. It is in this setting
that the gap between our approach and the state of the art is the greater (up to
9% on classification).

5 Discussion

The current standard for the evaluation of an unsupervised method involves the
use of an AlexNet architecture trained on ImageNet and tested on class-level
tasks. To understand and measure the various biases introduced by this pipeline
on DeepCluster, we consider a di↵erent training set, a di↵erent architecture and
an instance-level recognition task.

5.1 ImageNet versus YFCC100M

ImageNet is a dataset designed for a fine-grained object classification chal-
lenge [69]. It is object oriented, manually annotated and organised into well
balanced object categories. By design, DeepCluster favors balanced clusters and,
as discussed above, our number of cluster k is somewhat comparable with the
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Classification Detection Segmentation

Method Training set fc6-8 all fc6-8 all fc6-8 all

Best competitor ImageNet 63.0 67.7 43.4† 53.2 35.8† 37.7

DeepCluster ImageNet 72.0 73.7 51.4 55.4 43.2 45.1
DeepCluster YFCC100M 67.3 69.3 45.6 53.0 39.2 42.2

Table 3: Impact of the training set on the performance of DeepCluster mea-
sured on the Pascal VOC transfer tasks as described in Sec. 4.4. We compare
ImageNet with a subset of 1M images from YFCC100M [31]. Regardless of the
training set, DeepCluster outperforms the best published numbers on most tasks.
Numbers for other methods produced by us are marked with a †

number of labels in ImageNet. This may have given an unfair advantage to
DeepCluster over other unsupervised approaches when trained on ImageNet. To
measure the impact of this e↵ect, we consider a subset of randomly-selected 1M
images from the YFCC100M dataset [31] for the pre-training. Statistics on the
hashtags used in YFCC100M suggests that the underlying “object classes” are
severly unbalanced [61], leading to a data distribution less favorable to Deep-
Cluster.

Table 3 shows the di↵erence in performance on Pascal VOC of DeepClus-
ter pre-trained on YFCC100M compared to ImageNet. As noted by Doersch et
al . [25], this dataset is not object oriented, hence the performance are expected to
drop by a few percents. However, even when trained on uncured Flickr images,
DeepCluster outperforms the current state of the art by a significant margin
on most tasks (up to +4.3% on classification and +4.5% on semantic segmen-
tation). We report the rest of the results in the supplementary material with
similar conclusions. This experiment validates that DeepCluster is robust to a
change of image distribution, leading to state-of-the-art general-purpose visual
features even if this distribution is not favorable to its design.

5.2 AlexNet versus VGG

In the supervised setting, deeper architectures like VGG or ResNet [8] have a
much higher accuracy on ImageNet than AlexNet. We should expect the same
improvement if these architectures are used with an unsupervised approach. Ta-
ble 4 compares a VGG-16 and an AlexNet trained with DeepCluster on ImageNet
and tested on the Pascal VOC 2007 object detection task with fine-tuning. We
also report the numbers obtained with other unsupervised approaches [25, 46].
Regardless of the approach, a deeper architecture leads to a significant improve-
ment in performance on the target task. Training the VGG-16 with DeepCluster
gives a performance above the state of the art, bringing us to only 1.4 percents
below the supervised topline. Note that the di↵erence between unsupervised and
supervised approaches remains in the same ballpark for both architectures (i.e.
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• We have to go to less supervised learning 

• Similarity search:
• non-parametric method for media matching
• efficient / scalable

• A fundamental tool for unsupervised learning
• not only for vision: see [Word translation without parallel data, Conneau, 

Lample, Ranzato, Denoyer, Jégou, Arxiv'18]

• All works are open-sourced
• check it out!
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