Domain Adaptation

Michèle Sebag TAU, CNRS – INRIA – LRI – Université Paris-Sud

Credit: Arthur Pesah, Pascal Germain

Toulouse - Oct. 2018

What is domain adaptation ?

some differences should make no difference

Domain adaptation:

- Learning from poor data by leveraging other (not really, not much different) data
- Teaching the learner to overcome these differences

Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Have you been to Stockholm recently ?

<□ > < 部 > < 差 > < 差 > 差 の Q (~ 4/45)

... you recognize the castle ...

regardless of light, style, angle...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Formally

Domain Adaptation

- ► Task: classification, or regression
- A source domain
- A target domain

source distribution \mathcal{D}_s target distribution \mathcal{D}_t

Idea

- Source and target are "sufficiently" related
- ... one wants to use source data to improve learning from target data

Applications

- 1. Calibration
- 2. Physiological signals
- 3. Reality gap (simulation vs real-world)
- 4. Lab essays
- 5. Similar worlds

Application 1. Calibration

Different devices

- same specifications (in principle)
- in practice response function is biased
- ► Goal: recover the output complying with the specifications.

Application 2. Physiological signals

Won Kyu Lee et al. 2016

Different signals

- Acquired from different sensors (different price, SNR),
- Goal: predict from poor signal

Application 3. Bridging the reality gap

Source world aimed to model target world

- Target (expensive): real-world
- Source (cheap, approximate): simulator
- Goal: getting best of both worlds

In robotics; for autonomous vehicles; for science (e.g. Higgs boson ML challenge); ...

Application 4. Learning across labs

Schoenauer et al. 18

Many labs, many experiments in quantitative microscopy

- > Each dataset: known and unknown perturbations; experimental bias
- ▶ Goal: Identify drugs in datasets: *in silico* discovery.

Application 5. Bridges between worlds

12/45

Different domains

- Supposedly related
- One (source) is well-known;
- The other (target) less so: few or no labels
- Goal: Learn faster/better on the target domain

At the root of domain adaptation; Analogical reasoning

Hofstadter 1979: Analogy is at the core of cognition

Solar system \leftrightarrow Atom and electrons

Bongard IQ tests

Roots of domain adaptation, 2

Training on male mice; testing on male and female mice ?

Relaxing the iid assumption:

when training and test distributions differ

- Class ratios are different
 Kubat et al. 97; Lin et al, 02; Chan and Ng 05
- Marginals are different: Covariate shift Shimodaira 00; Zadrozny 04; Sugiyama et al. 05; Blickel et al. 07

Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

15 / 45

Some Domain Adaptation Algorithms

Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Settings: Domain adaptation wrt Transfert learning

Notations

	Joint dis.	Marginal Instance dis.	Conditional dis.
Source	\mathcal{D}_s	$P_s(X)$	$P_s(Y X)$
Target	\mathcal{D}_t	$P_t(X)$	$P_t(Y X)$

The settings

- Same instance distributions $P_s(X) = P_t(X)$
 - Same conditional distributions $P_s(Y|X) == P_t(Y|X)$ Usual setting
 - ► Different conditional distributions $P_s(Y|X) \neq P_t(Y|X)$ Concept drift Inductive transfert learning
- Different instance distributions $P_s(X) \neq P_t(X)$
 - Same conditional distributions $P_s(Y|X) == P_t(Y|X)$ Domain adaptation Transductive transfert learning
 - ► Different conditional distributions $P_s(Y|X) \neq P_t(Y|X)$ Concept drift Unsupervised transfert learning

NB: For some authors, all settings but the usual one are Transfer learning. NB: Multi-task, $dom(Y_s) \neq dom(Y_t)$ NB: A continuum from Domain Adaptation to Transfer Learning to Multi-task learning

Examples of concept drift

- Which speed reached depending on the actuator value ? decreases as the motor is aging
- The concept of "chic" ? depends on the century

nice, cool, ...

Related: Lifelong learning

	Dataset	instances	attributes	Reference
 player increases its abilities through time 	Chess	503	8	(Žliobaite, 2010)
poker hands were generated in order	Poker	$100,\!000$	10	(Olorunnimbe et al., 2015)
 instance is a market state in 30 minutes 	Electricity	45,312	8	(Baena-García et al., 2006)
 synthetic data with three drift points of abrupt 	Stagger	70,000	3	(Gama et al., 2014)
concept change	AutoML2 challenge data sets			

Shameless ad for AutoML3: AutoML for Lifelong ML-2018

Toy example of domain adaptation: the intertwining moons

Settings, 2

General assumptions

- Wealth of information about source domain
- Scarce information about target domain

Domain Adaptation aims at alleviating the costs

- of labelling target examples
- of acquiring target examples

No target labels

Unsupervised Domain Adaptation

Partial labels

Partially unsupervised Domain Adaptation

Few samples

Few-shot Domain Adaptation

19/45

Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

20 / 45

Some Domain Adaptation Algorithms Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Key Concept: Distance between source and target marginal distributions

- 1. The larger, the more difficult the domain adaptation
- 2. Can we measure it ? for theory

if so, turn the measure into a loss, to be minimized

3. Can we reduce it ?

The 2 moons problem

for algorithms

Domain adaptation, intuition

Distance between source and target marginal distributions, followed

Main strategies

• Reduce it in original space \mathcal{X}

Importance sampling

- Modify source representation
- Map source and target onto a third latent space
- Build generative mechanisms in latent space

Optimal transport

Domain adversarial

Generative approaches

(ロ) (部) (E) (E) (E) (000)

Milestone: defining distances on distributions

Discrepancy between source and target marginal distributions

Ben-David 06, 10

 \mathcal{H} Divergence between P_s and P_t

$$d_X(P_s, P_t) = 2\sup_{h \in \mathcal{H}} |Pr_x |_{\mathcal{P}_s}(h(x) = 1) - Pr_{x \sim P_t}(h(x) = 1)|$$

This divergence is high if there exists h separating P_s and P_t .

Perfect separation case

Discrepancy between source and target marginal distributions, 2 Ben-David 06, 10

$$d_X(P_s, P_t) = 2\sup_{h \in \mathcal{H}} |Pr_x |_{\mathcal{P}_s}(h(x) = 1) - Pr_{x \sim P_t}(h(x) = 1)|$$

Perfect mixt case

Discrepancy between source and target marginal distributions, 3

Ben-David et al. 2006, 2010 Proxy A-distance (PAD)

$$\widehat{d_X(P_s,P_t)} = 2\left(1 - \min_h\left(\frac{1}{n}\sum_j \mathbb{1}_{h(x_i)=0} + \frac{1}{n'}\sum_j \mathbb{1}_{h(x_j')=1}\right)\right)$$

The divergence can be approximated by the ability to empirically discriminate between source and target examples.

Comment

Approximation of \mathcal{H} divergence

Estimation of distribution differences \rightarrow two-sample tests.

<ロ > < 部 > < 言 > < 言 > こ き < つ へ (?) 26 / 45

Bounding the domain adaptation risk

Ben-David et al. 2006, 2010

Notations

- $R_s(h) = \mathbb{E}_{\mathcal{D}_s} \mathcal{L}(h)$ risk of h under source distribution
- $R_t(h) = \mathbb{E}_{\mathcal{D}_t} \mathcal{L}(h)$ risk of h under target distribution

Theorem

With probability $1 - \delta$, if $d(\mathcal{H})$ is the VC-dimension of \mathcal{H} ,

$$R_t(h) \leq \widehat{R_s(h)} + \widehat{d_X} + C\sqrt{\frac{4}{n}(d(\mathcal{H})\log{\frac{2}{d}} + \log{\frac{4}{\delta}})} + \text{Best possible}$$

and

Best possible =
$$\inf_{h} (R_{S}(h) + R_{T}(h))$$

What we want (risk on h wrt D_T) is bounded by:

- empirical risk on source domain
- + Proxy A-distance
- + error related to possible overfitting
- + min error one can achieve on both source and target distribution.

Interpretation

Ben-David et al. 2006, 2010

28 / 45

The regret

With probability $1 - \delta$, if $d(\mathcal{H})$ is the VC-dimension of \mathcal{H} ,

$$R_t(h) - \mathsf{Best} \ \mathsf{possible} \leq \widehat{R_s(h)} + C \sqrt{rac{4}{n}} (d(\mathcal{H}) \log rac{2}{d(\mathcal{H})} + \log rac{4}{\delta}) + \widehat{d_X}$$

Hence a domain adaptation strategy:

- Choose \mathcal{H} with good potential
- Minimize d_X: through transporting source data; or mapping source and target toward another favorable space.

Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Extending Adversarial Ideas to Domain Adaptation

Input

$$\mathcal{E}_{s} = \{(x_{s,i}, y_{i}), i = [[1, n]]\}$$
$$\mathcal{E}_{t} = \{(x_{t,j}), j = [[1, m]]\}$$

Principle

- What matters is the distance between \mathcal{D}_s and \mathcal{D}_t Ben David et al. 2010
- Strategy: mapping both on a same latent space in an indistinguishable manner

Domain Adversarial Neural Net

Ganin et al. 2015; 2016

Adversarial Modules

- ► Encoder G_f green $x_s \mapsto G_f(x_s); x_t \mapsto G_f(x_t)$
- ▶ Discriminator G_d : trained from $\{(G_f(x_{s,i}), 1)\} \cup \{(G_f(x_{t,j}), 0)\}$ red

$$\mathsf{Find} \; \max_{G_f} \min_{G_d} \mathcal{L}(G_d, G_f)$$

And a Classifier Module

- G_y : $\mathcal{L}(G_y) = \sum_i \ell(G_y(G_f(x_{s,i})), y_i)$ blue
- ▶ NB: needed to prevent trivial solution $G_f \equiv 0$

(ロ) (部) (音) (音) (音) (音) (31/45)

DANN, 2

Ganin et al. 2015; 2016

Training

- 1. Classifier: backprop from $\nabla(\mathcal{L}(G_{\gamma}))$
- 2. Encoder: backprop from $\nabla(\mathcal{L}(G_y))$ and $-\nabla(\mathcal{L}(G_d))$ green
- 3. Discriminator: backprop from $\nabla(\mathcal{L}(G_d))$ red

blue

The algorithm

Algorithm 1 Shallow DANN – Stochastic training update

1:	Input:	20
	- samples $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and $T = \{\mathbf{x}_i\}_{i=1}^{n'}$,	
	— hidden layer size D ,	21
	— adaptation parameter λ ,	22
	— learning rate μ ,	- 05
2:	Output: neural network $\{\mathbf{W}, \mathbf{V}, \mathbf{b}, \mathbf{c}\}$	24
3:	$\mathbf{W}, \mathbf{V} \leftarrow \operatorname{random_init}(D)$	25
4:	$\mathbf{b}, \mathbf{c}, \mathbf{u}, d \leftarrow 0$	26
5:	while stopping criterion is not met do	27
6:	for i from 1 to n do	28
7:	# Forward propagation	29
8:	$G_f(\mathbf{x}_i) \leftarrow \operatorname{sigm}(\mathbf{b} + \mathbf{W}\mathbf{x}_i)$	
9:	$G_y(G_f(\mathbf{x}_i)) \leftarrow \operatorname{softmax}(\mathbf{c} + \mathbf{V}G_f(\mathbf{x}_i))$	30
10:	# Backpropagation	31
11:	$\Delta_{\mathbf{c}} \leftarrow -(\mathbf{e}(y_i) - G_y(G_f(\mathbf{x}_i)))$	32
12:	$\Delta_{\mathbf{V}} \leftarrow \Delta_{\mathbf{c}} \ G_f(\mathbf{x}_i)^{\top}$	33
13:	$\Delta_{\mathbf{b}} \leftarrow (\mathbf{V}^{\top} \Delta_{\mathbf{c}}) \odot G_f(\mathbf{x}_i) \odot (1 - G_f(\mathbf{x}_i))$	34
14:	$\Delta_{\mathbf{W}} \leftarrow \Delta_{\mathbf{b}} \cdot (\mathbf{x}_i)^\top$	35
15:	<pre># Domain adaptation regularizer</pre>	36
16:	#from current domain	37
17:	$G_d(G_f(\mathbf{x}_i)) \leftarrow \operatorname{sigm}(d + \mathbf{u}^\top G_f(\mathbf{x}_i))$	38
18:	$\Delta_d \leftarrow \lambda (1 - G_d(G_f(\mathbf{x}_i)))$	39
19:	$\Delta_{\mathbf{u}} \leftarrow \lambda (1 - G_d(G_f(\mathbf{x}_i))) G_f(\mathbf{x}_i)$	40
		4.1

Note: In this pseudo-code, $\mathbf{e}(y)$ refers to a "one-hot" vector, consisting of all 0s except for a 1 at position y, and \odot is the element-wise product.

33 / 45

The intertwinning moons

(a) Standard NN. For the "domain classification", we use a non adversarial domain regressor on the hidden neurons learned by the Standard NN. (This is equivalent to run Algorithm 1, without Lines 22 and 31)

- left: the decision boundary
- 2nd left: apply PCA on the feature layer
- 3rd left: discrimination source vs target
- right: each line corresponds to hidden neuron = .5

Mixing the distributions in latent space

$\mathbf{Syn} \to \mathbf{SVHN}$

Evaluation

Top: SVHN; Bottom: MNIST

Usual practice

- The reference experiment: adapting from Street View House Numbers (SVHN, source) to MNIST (handwritten digits)
- Score: accuracy on the test set of MNIST.
- Caveat: reported improvements might come from:
 - 1. algorithm novelty;
 - 2. neural architecture;
 - 3. hyperparameter tuning ?
- Lesion studies are required !

Experimental setting

Ganin et al., 16

The datasets

- MNIST: as usual
- MNIST-M: blend with patches randomly extracted from color photos from BSDS500
- SVHN: Street-View House Number dataset
- Syn Numbers: figures from WindowsTM fonts, varying positioning, orientation, background and stroke colors, blur.
- Street Signs: real (430) and synthetic (100,000)

Results

Ganin et al., 16

METHOD	Source	MNIST	Syn Numbers	SVHN	Syn Signs
METHOD	TARGET	MNIST-M	SVHN	MNIST	GTSRB
Source only		.5225	.8674	.5490	.7900
SA (Fernando et	al., 2013)	.5690 (4.1%)	.8644(-5.5%)	.5932~(9.9%)	$.8165\ (12.7\%)$
DANN		. 7666 (52.9%)	.9109 (79.7%)	.7385 (42.6%)	.8865 (46.4%)
TRAIN ON TARGET		.9596	.9220	.9942	.9980

Score DANN: 74%

Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○
39/45

Decoupling the encoder: ADDA

Tzeng et al., 2017

Adversarial Discriminative Domain Adaptation (ADDA)

- ▶ DANN used a single encoder G_f for both source and target domains
- ADDA learns G_{f,s} and G_{f,t} independently, both subject to G_d (domain discriminator); and G_{f,s} subject to G_y
- Rationale: makes it easier to handle source and target with different dimensionality, specificities,...

Score DANN: 74% Score ADDA: 76%

Replacing domain discrimination with reconstruction: DRCN

Ghifary et al., 2016

Deep Reconstruction-Classification Networks (DRCN)

- ▶ DANN used a discriminator G_d to discriminate $G_f(x_t)$ and $G_f(x_s)$
- ▶ DRCN replaces G_d with a decoder s.t. $G_d(G_f(x_t)) \approx x_t$
- Rationale: The latent space preserves all information from target, while enabling classification on source.

Score DANN: 74% Score ADDA: 76% Score DRCN: 82%

41/45

Hybridizing ADDA and DRCN: Deep Separation Networks

Bousmalis et al., 2016

Deep Separation Networks (DSN)

- Encoder:
 - ► A shared part G_{f,u}
 - A private source part G_{f,s}
 - A private domain part G_{f,t}
- Discriminator \rightarrow Decoder
 - $G_d(G_{f,u}(x_s), G_{f,s}(x_s)) \approx x_s$
 - $G_d(G_{f,u}(x_t), G_{f,t}(x_t)) \approx x_t$

(... stands for "shared weights") Score DANN: 74% Score ADDA: 76% Score DRCN: 82% Score DSN: 82.7% ←□ → ←⑦ → ←⊇ → ←⊇ → ⊇ → →

42 / 45

Not covered...

Optimal transport

Couturi Peyre 18, Courty et al. 17,18

Generative Networks and domain to domain translations

Taigman et al. 16; Sankaranarayanan et al. 17; Liu et al. 17

Choi et al. 17; Anoosheh et al., 2017; Shu et al. 18

Partial domain adaptation

Motiian et al. 17a, b; Schoenauer-Sebag 18

Conclusions

Theory and Validation

Most theoretical analysis relies on

Ben David et al. 06; 10

- When using feature space, something is underlooked (see DRCN).
- Comprehensive ablation studies needed to assess the mixture of losses/architectures
- Assessing the assumptions

Applications

- Many applications on vision
- Reinforcement learning !
- Natural Language processing !

The Waouh effect ?

44 / 45

Take home message

What is domain adaptation

- Playing with tasks and distributions
- Making assumptions about how they are related
- Testing your assumptions

Domain adaptation is like playing Lego with ML