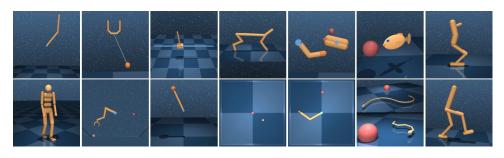
Distributional Reinforcement Learning

Marc Bellemare, Will Dabney, Georg Ostrovski, Mark Rowland, Rémi Munos

Deep RL is already a successful empirical research domain



Can we make it a *fundamental* research domain?

Related fundamental works:

- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?

Can we make it a *fundamental* research domain?

Related fundamental works:

- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?

Distributional-RL

Shows interesting interactions between RL and deep-learning

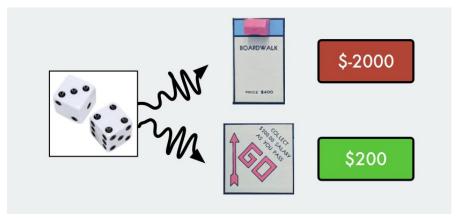
Outline:

- The idea of distributional-RL
- The theory
- How to represents distributions?
- Neural net implementation
- Results
- Why does this work?

Random immediate reward

Expected immediate reward

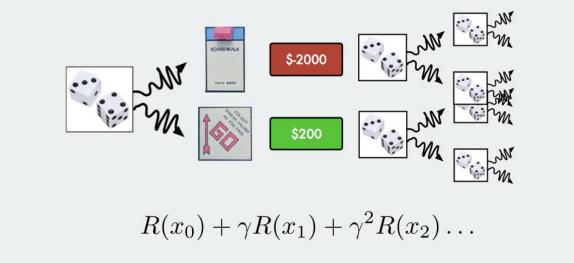
$$\mathbb{E}[R(x)] = \frac{1}{36} \times (-2000) + \frac{35}{36} \times (200) = 138.88$$



Random variable reward:

$$R(x) = \begin{cases} -2000 \text{ w.p. } 1/36\\ 200 \text{ w.p. } 35/36 \end{cases}$$

The return = sum of future discounted rewards



- Returns are often complex, multimodal
- Modelling the expected return hides this intrinsic randomness
- Model all possible returns!

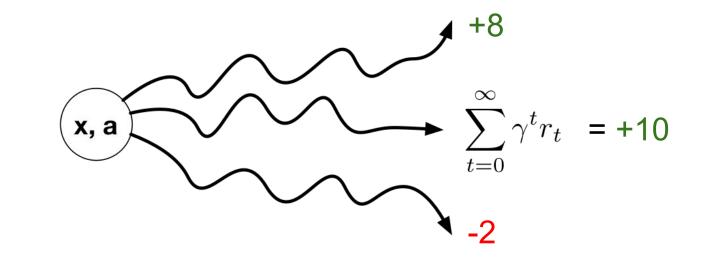
The r.v. Return $Z^{\pi}(x,a)$

(x, a)
$$\pi$$
 $\sum_{t=0}^{\infty} \gamma^t r_t = +10$

Captures intrinsic randomness from:

- Immediate rewards
- Stochastic dynamics
- Possibly stochastic policy

The r.v. Return $Z^{\pi}(x,a)$



$$Z^{\pi}(x,a) = \sum_{t\geq 0} \gamma^{t} r(x_{t},a_{t}) \big|_{x_{0}=x,a_{0}=a,\pi}$$

The expected Return

The value function
$$\,Q^{\pi}(x,a) = \mathbb{E}[Z^{\pi}(x,a)]\,$$

Satisfies the Bellman equation

$$Q^{\pi}(x, a) = \mathbb{E}[r(x, a) + \gamma Q^{\pi}(x', a')]$$

where $x' \sim p(\cdot | x, a)$ and $a' \sim \pi(\cdot | x')$

Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

$$Z^{\pi}(x,a) \stackrel{D}{=} R(x,a) + \gamma Z^{\pi}(x',a')$$

where $x' \sim p(\cdot|x,a)$ and $a' \sim \pi(\cdot|x')$

Does this equation make sense?

Example

Reward = Bernoulli ($\frac{1}{2}$), discount factor $\gamma = \frac{1}{2}$

Bellman equation:
$$\,V=rac{1}{2}+rac{1}{2}V$$
 , thus V = 1

$$R = \begin{cases} 1 & \text{w.p. } 1/2 \\ 0 & \text{w.p. } 1/2 \end{cases}$$

Return
$$Z = \sum_{t \ge 0} 2^{-t} R_t$$
 Distribution?

Example

Reward = Bernoulli ($\frac{1}{2}$), discount factor $\gamma = \frac{1}{2}$

Bellman equation: $V = \frac{1}{2} + \frac{1}{2}V$, thus V = 1

$$R = \begin{cases} 1 & \text{w.p. } 1/2 \\ 0 & \text{w.p. } 1/2 \end{cases}$$

Return
$$Z = \sum_{t \ge 0} 2^{-t} R_t$$
 Distribution? $\mathcal{U}([0,2])$ (rewards = binary expansion of a real number)

Example

Reward = Bernoulli ($\frac{1}{2}$), discount factor $\gamma = \frac{1}{2}$

Bellman equation: $V=rac{1}{2}+rac{1}{2}V$, thus V = 1

$$R = \begin{cases} 1 & \text{w.p. } 1/2 \\ 0 & \text{w.p. } 1/2 \end{cases}$$

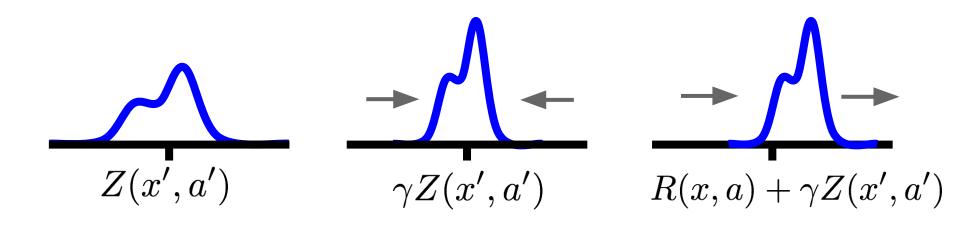
Return
$$Z = \sum_{t \ge 0} 2^{-t} R_t$$
 Distribution? $\mathcal{U}([0,2])$

Distributional Bellman equation:
$$Z = \mathcal{B}(\frac{1}{2}) + \frac{1}{2}Z$$

In terms of distribution: $\eta(z) = \frac{1}{2} (\delta(0) + \delta(1)) * 2\eta(2z)$
 $= \eta(2z) + \eta(2(z-1))$

Distributional Bellman operator

 $T^{\pi}Z(x,a) = R(x,a) + \gamma Z(x',a')$



Does there exists a fixed point?

Properties

Theorem [Rowland et al., 2018]

 T^{π} is a contraction in Cramer metric

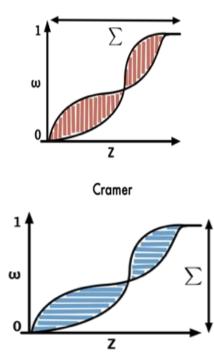
$$\ell_2(X,Y) = \left(\int_{\mathbb{R}} \left(F_X(t) - F_Y(t)\right)^2 dt\right)^{1/2}$$

Theorem [Bellemare et al., 2017]

 T^{π} is a contraction in Wasserstein metric,

$$w_p(X,Y) = \left(\int_{\mathbb{R}} \left(F_X^{-1}(t) - F_Y^{-1}(t)\right)^p dt\right)^{1/p}$$

(but not in KL neither in total variation) Intuition: the size of the support shrinks.



Wasserstein

Distributional dynamic programming

Thus T^{π} has a unique fixed point, and it is Z^{π}

Policy evaluation:

For a given policy π , iterate $Z \leftarrow T^{\pi}Z$ converges to Z^{π}

Distributional dynamic programming

Thus T^{π} has a unique fixed point, and it is Z^{π}

Policy evaluation:

For a given policy $\pi,$ iterate $Z \leftarrow T^{\pi}Z\,$ converges to Z^{π}

Policy iteration:

- For current policy π_k , compute Z^{π_k}
- Improve policy

$$\pi_{k+1}(x) = \arg\max_a \mathbb{E}[Z^{\pi_k}(x,a)]$$

Does Z^{π_k} converge to the return distribution for the optimal policy?

Distributional Bellman optimality operator

$$TZ(x,a) \stackrel{D}{=} r(x,a) + \gamma Z(x',\pi_Z(x'))$$

where $x' \sim p(\cdot | x, a)$ and $\pi_Z(x') = \arg \max_{a'} \mathbb{E}[Z(x', a')]$

Is this operator a contraction mapping?

Distributional Bellman optimality operator

$$TZ(x,a) \stackrel{D}{=} r(x,a) + \gamma Z(x',\pi_Z(x'))$$

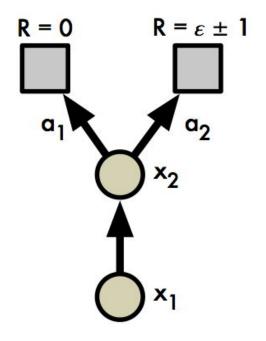
where $x' \sim p(\cdot|x, a)$ and $\pi_Z(x') = \arg \max_{a'} \mathbb{E}[Z(x', a')]$

Is this operator a contraction mapping?

No!

It's not even continuous

The dist. opt. Bellman operator is not smooth



Consider distributions Z_ϵ

If $\varepsilon > 0$ we back up a bimodal distribution

If ε < 0 we back up a Dirac in 0

Thus the map $Z_\epsilon \mapsto T Z_\epsilon$ is not continuous

Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

if the optimal policy is unique, then the iterates $Z_{k+1} \leftarrow TZ_k$ converge to Z^{π^*}

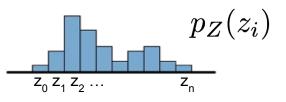
Intuition: The distributional Bellman operator preserves the mean, thus the mean will converge to the optimal policy π^* eventually. If the policy is unique, we revert to iterating T^{π^*} , which is a contraction.

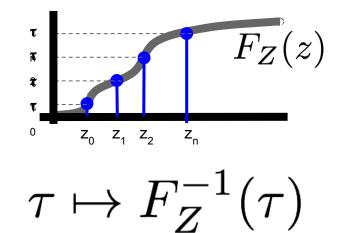
How to represent distributions?

• Categorical

• Inverse CDF for specific quantile levels

• Parametric inverse CDF



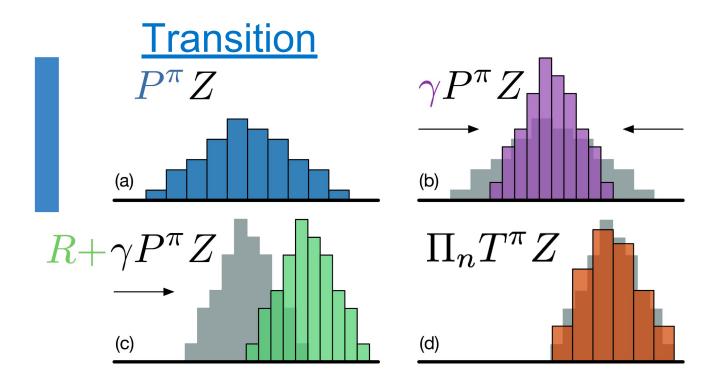


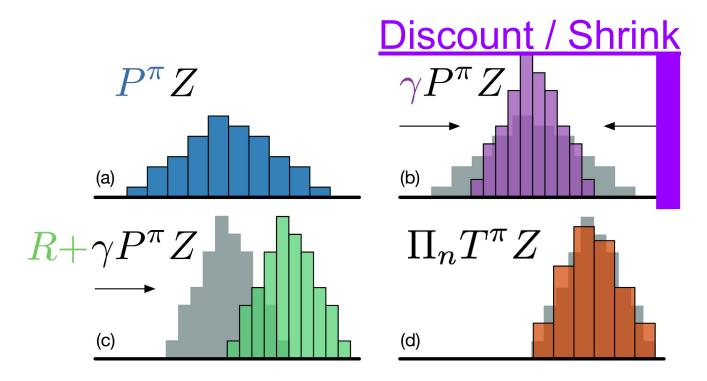
Categorical distributions

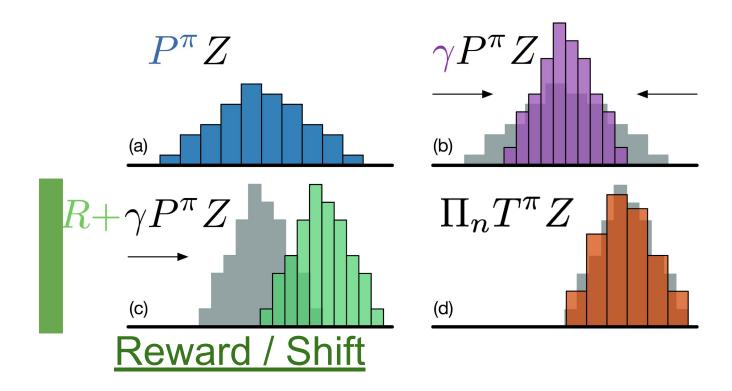
Distributions supported on a finite support $\{z_1, \ldots, z_n\}$

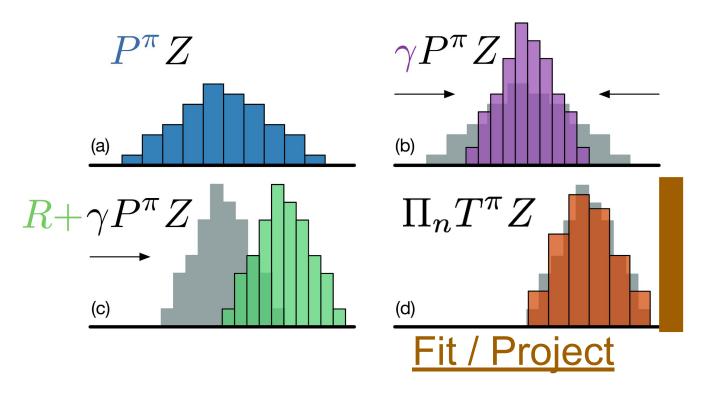
Discrete distribution $\{p_i(x, a)\}_{1 \le i \le n}$

$$Z(x,a) = \sum_{i} p_i(x,a)\delta_{z_i}$$









Projected distributional Bellman operator

Let Π_n be the projection onto the support (piecewise linear interpolation)

Theorem: $\Pi_n T^{\pi}$ is a contraction (in Cramer distance)

Intuition: \prod_n is a non-expansion (in Cramer distance).

Its fixed point Z_n can be computed by value iteration $Z \leftarrow \prod_n T^{\pi} Z$

Theorem:

$$\ell_2^2(Z_n, Z^\pi) \le \frac{1}{(1-\gamma)} \max_{1 \le i < n} |z_{i+1} - z_i|$$

[Rowland et al., 2018]

Projected distributional Bellman operator

Policy iteration: iterate

- Policy evaluation: $Z_k = \prod_n T^{\pi_k} Z_k$

- Policy improvement:
$$\pi_{k+1}(x) = \arg \max_{a} \mathbb{E}[Z^{\pi_k}(x,a)]$$

Theorem:

Assume there is a unique optimal policy. Z_k converges to $Z_n^{\pi^*}$, whose greedy policy is optimal.

Categorical distributional Q-learning

Observe transition samples $x_t, a_t \xrightarrow{r_t} x_{t+1}$

Update:

$$Z(x_t, a_t) = (1 - \alpha_t) Z(x_t, a_t) + \alpha_t \Pi_C(r_t + \gamma Z(x_{t+1}, \pi_Z(x_{t+1})))$$

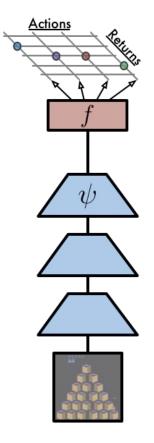
Theorem

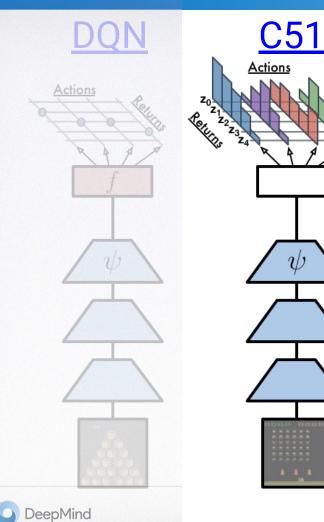
Under the same assumption as for Q-learning, assume there is a unique optimal policy π^* , then $Z \to Z_n^{\pi^*}$ and the resulting policy is optimal.

[Rowland et al., 2018]

DeepRL implementation

[Mnih et al., 2013]

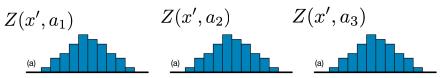




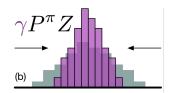
[Bellemare et al., 2017]

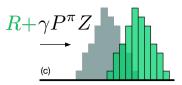
C51 (categorical distributional DQN)

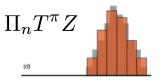
1. Transition x, $a \rightarrow x'$



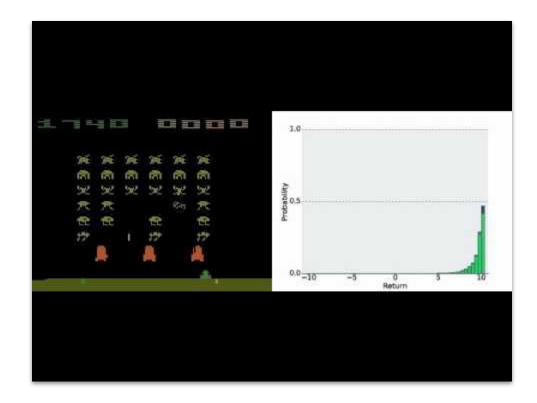
- 2. Select best action at x'
- 3. Compute Bellman backup
- 4. Project onto support
- Update toward projection (e.g., by minimize a kl-loss)



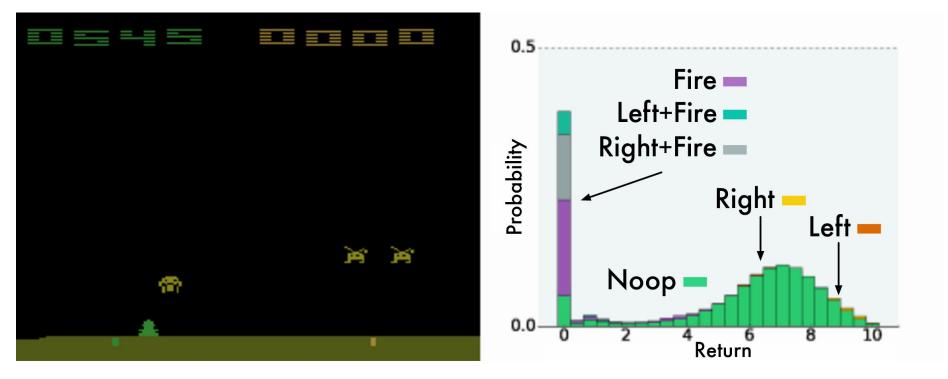


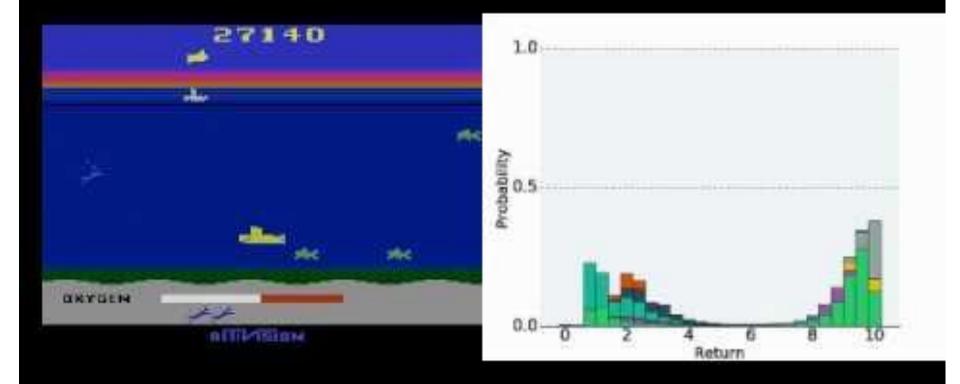


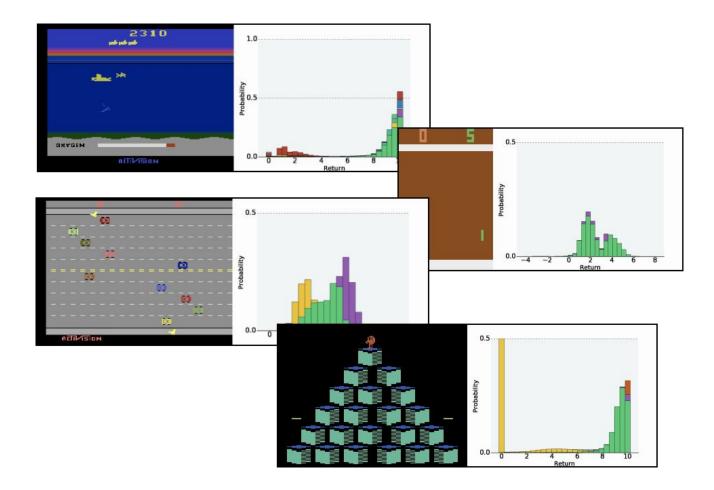
Categorical DQN

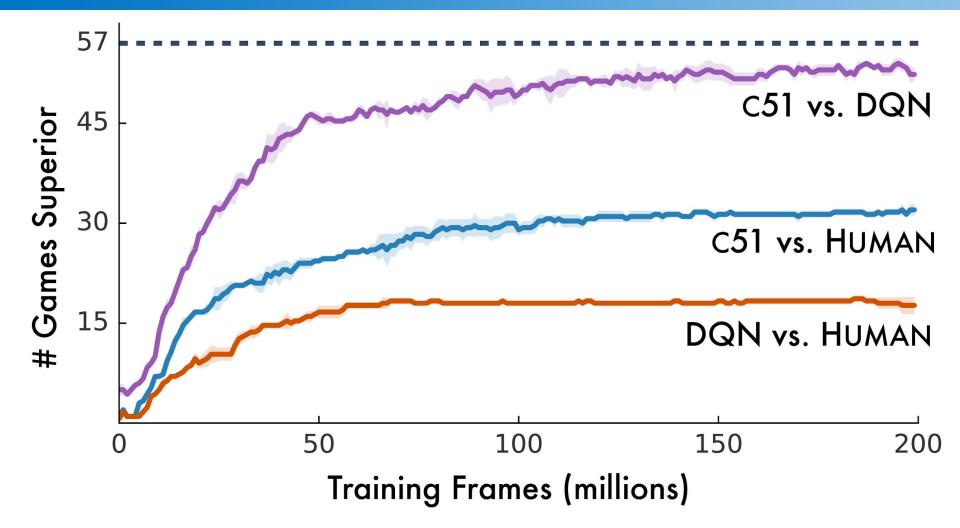


Randomness from future choices





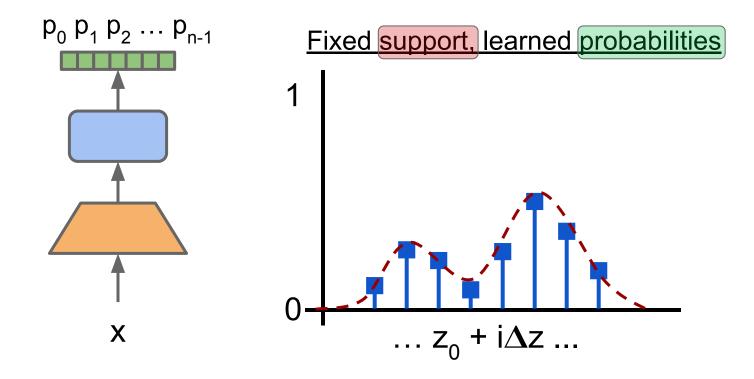




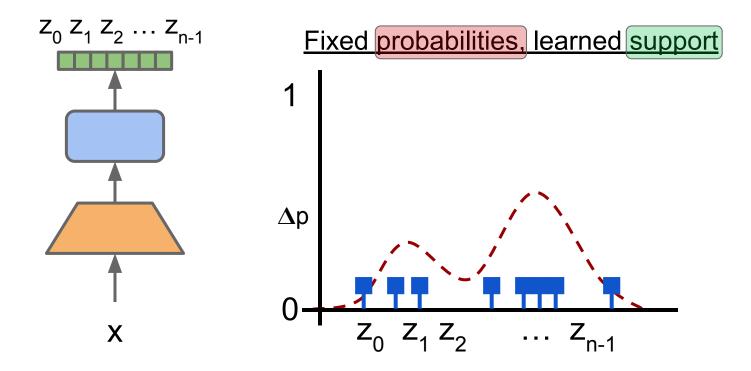
Results on 57 games Atari 2600

	Mean	Median	>human
DQN	228%	79%	24
Double DQN	307%	118%	33
Dueling	373%	151%	37
Prio. Duel.	592%	172%	39
C51	701%	178%	40

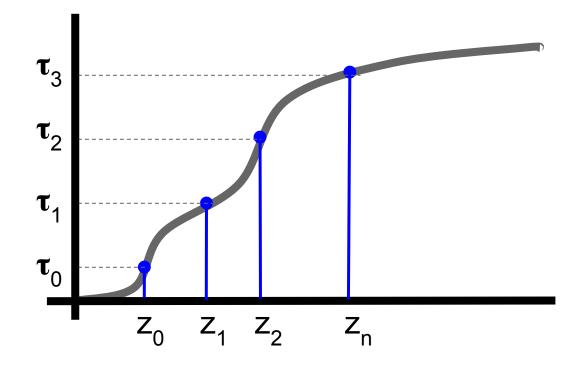
Categorical representation

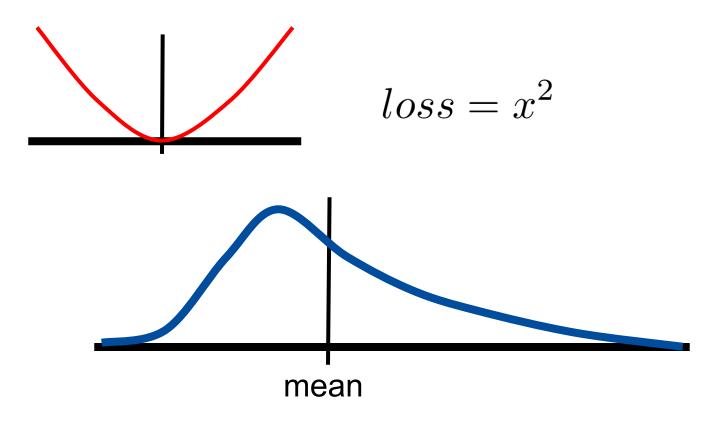


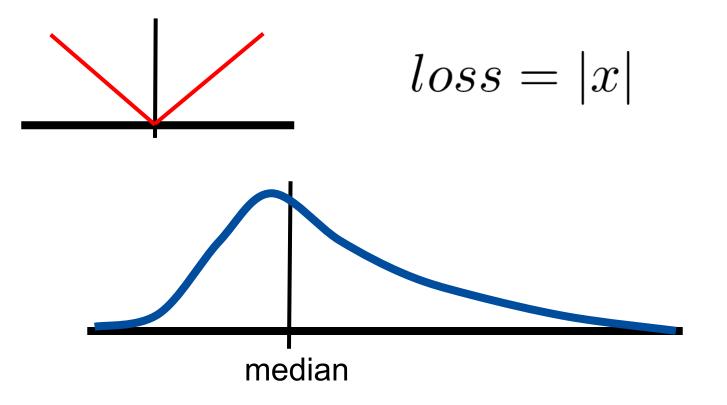
Quantile Regression Networks

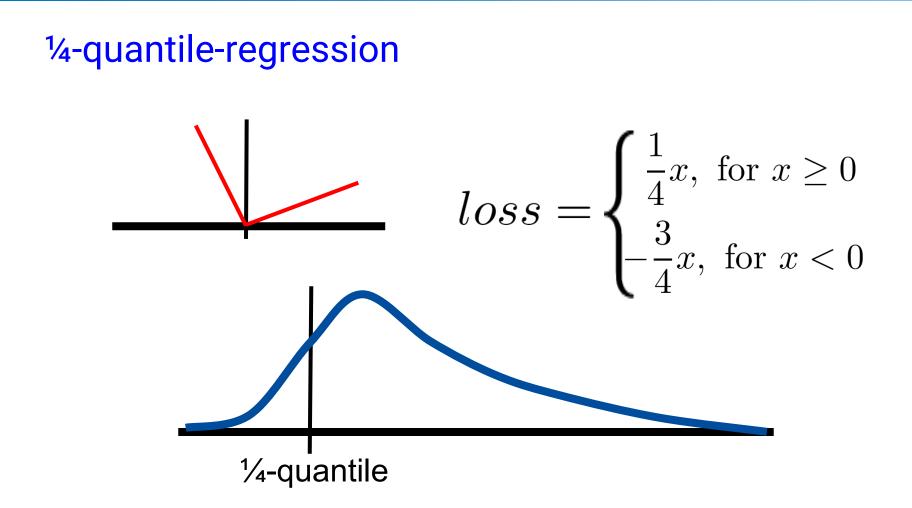


Inverse CDF learnt by Quantile Regression

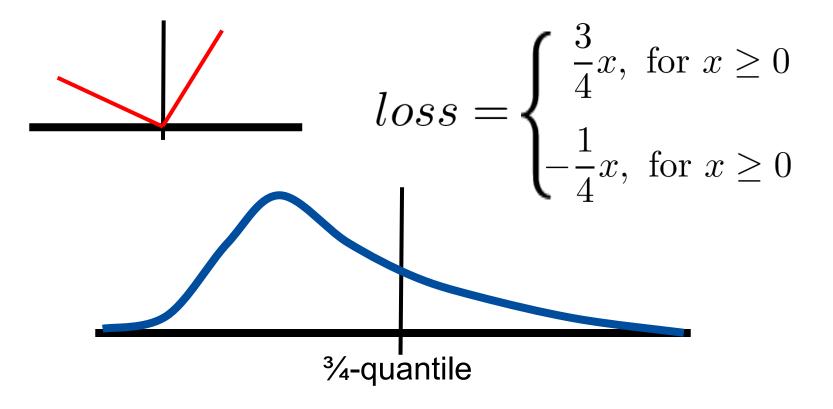




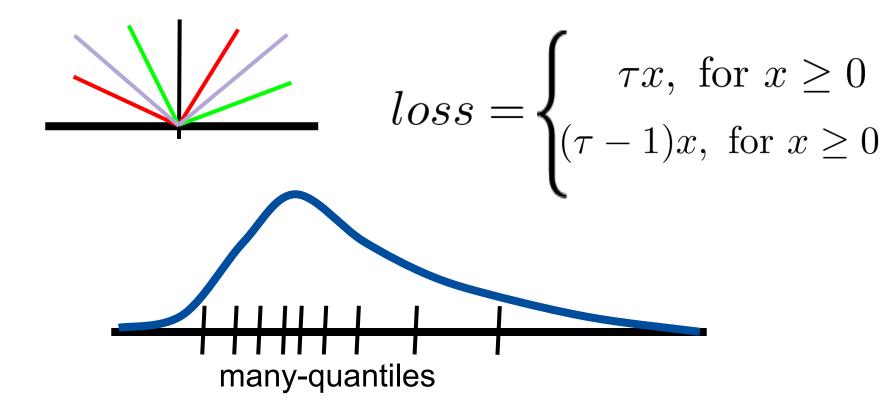




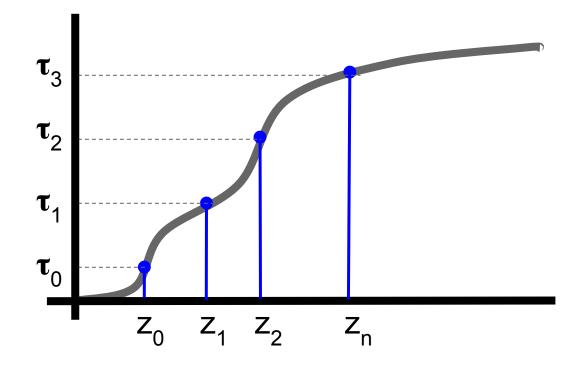
³⁄4-quantile-regression



many-quantiles-regression



Inverse CDF learnt by Quantile Regression

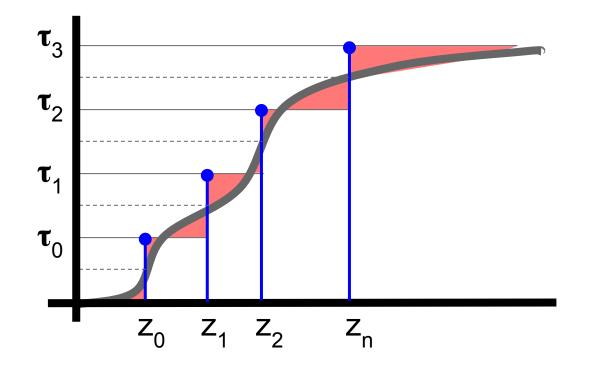


Quantile Regression DQN

$$z \sim Z_{\tau}(x_t, a_t)$$
$$z' \sim Z_{\tau}(x_{t+1}, a^*)$$
$$\delta_t = r_t + \gamma z' - z$$
QR loss: $\rho_{\tau}(\delta) = \delta(\tau - \mathbb{I}_{\delta < 0})$

Quantile Regression = projection in Wasserstein!

(on a uniform grid)



QR distributional Bellman operator

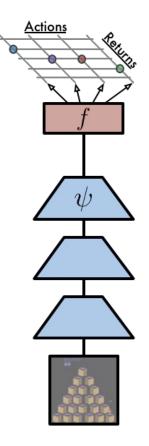
Theorem: $\Pi_{QR}T^{\pi}$ is a contraction (in Wasserstein)

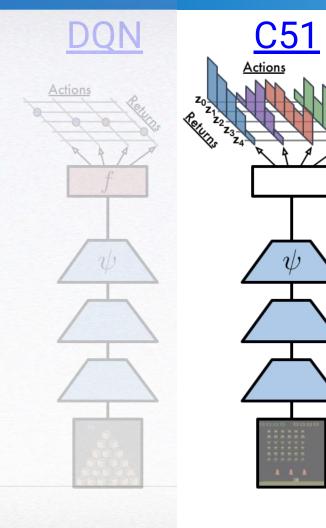
[Dabney et al., 2018]

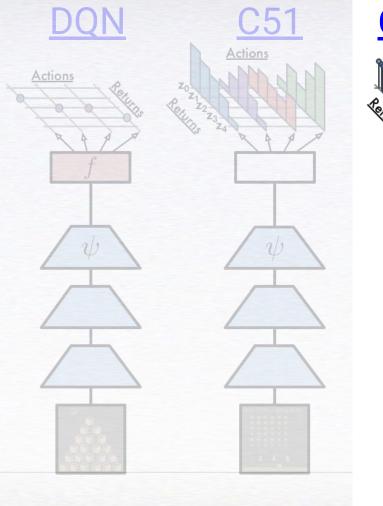
Intuition: quantile regression = projection in Wasserstein

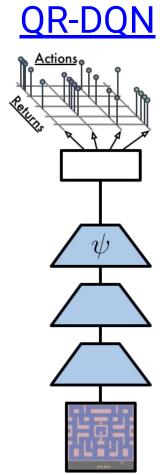
Reminder:

- T^{π} is a contraction (both in Cramer and Wasserstein)
- $\prod_n T^{\pi}$ is a contraction (in Cramer)



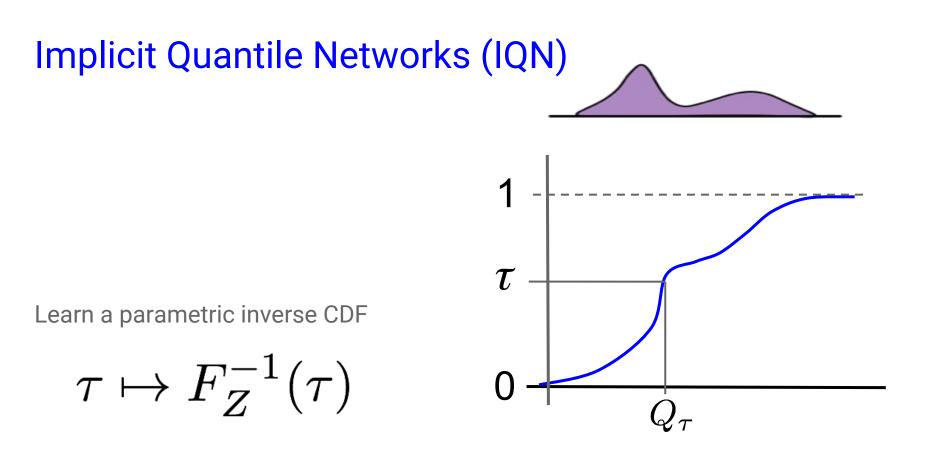


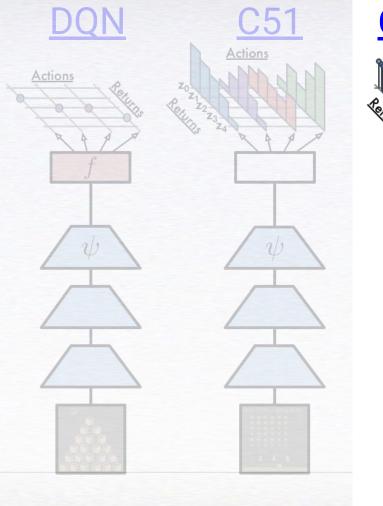


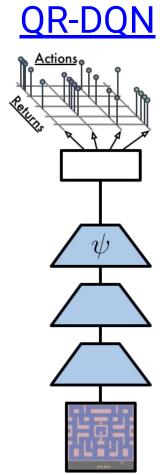


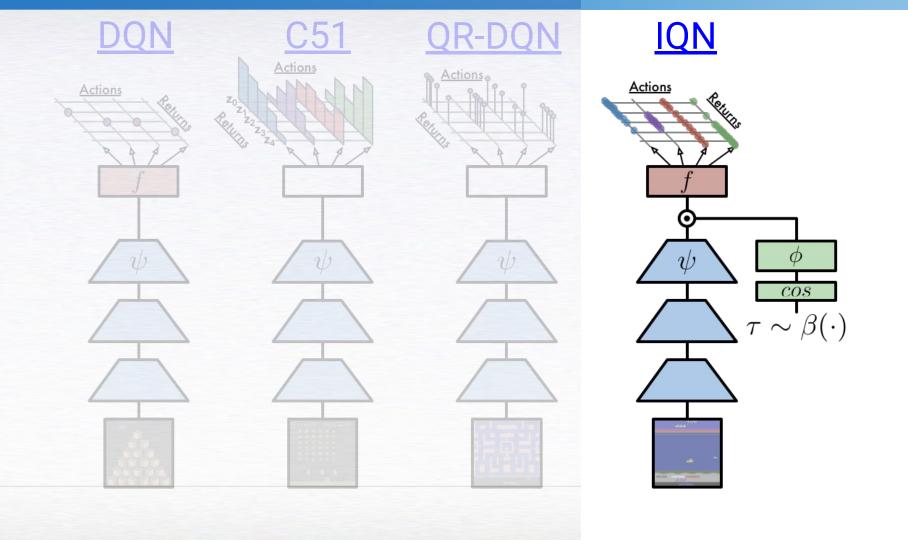
Quantile-Regression DQN

	Mean	Median
DQN	228%	79%
Double DQN	307%	118%
Dueling	373%	151%
Prio. Duel.	592%	172%
C51	701%	178%
QR-DQN	864%	193%









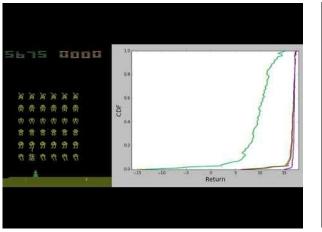
Implicit Quantile Networks for TD

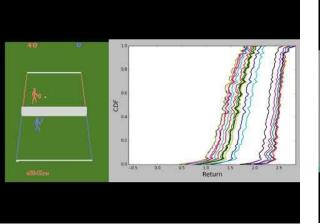
$$\tau \sim \mathcal{U}[0, 1], \quad z = Z_{\tau}(x_t, a_t)$$

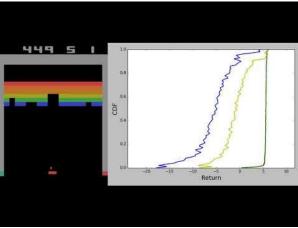
 $\tau' \sim \mathcal{U}[0, 1], \quad z' = Z_{\tau}(x_{t+1}, a^*)$

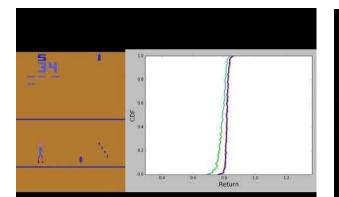
$$\delta_t = r_t + \gamma z' - z$$

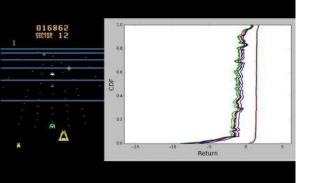
QR loss: $\rho_{\tau}(\delta) = \delta(\tau - \mathbb{I}_{\delta < 0})$

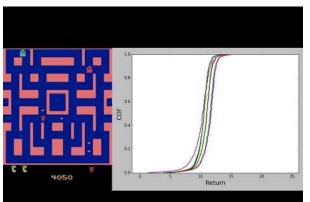












Implicit Quantile Networks

	Mean	Median	Human starts
DQN	228%	79%	68%
Prio. Duel.	592%	172%	128%
C51	701%	178%	116%
QR-DQN	864%	193%	153%
IQN	1019%	218%	162%

Implicit Quantile Networks

	Mean	Median	Human starts
DQN	228%	79%	68%
Prio. Duel.	592%	172%	128%
C51	701%	178%	116%
QR-DQN	864%	193%	153%
IQN	1019%	218%	162%
Rainbow	1189%	230%	125%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...

Why does it work?

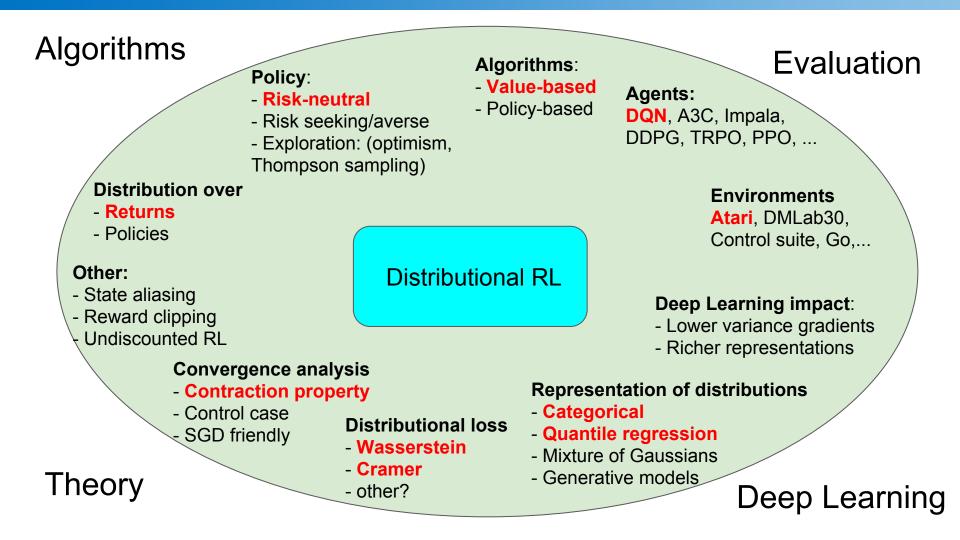
• In the end we only use the mean of these distributions

Why does it work?

• In the end we only use the mean of these distributions

When we use deep networks, maybe:

- Auxiliary task effect:
 - Same signal to learn from but more predictions
 - \circ More predictions \rightarrow richer signal \rightarrow better representations
 - Reduce state aliasing (disambiguate different states based on return)
- Density estimation instead of I2-regressions
 - RL uses same tools as deep learning
 - Lower variance gradient
- Other reasons?



- A distributional perspective on reinforcement learning, Bellemare, Dabney, Munos, ICML2017
- An Analysis of Categorical Distributional Reinforcement Learning, Rowland, Bellemare, Dabney, Munos, Teh, AISTATS2018
- *Distributional reinforcement learning with quantile regression*, Dabney, Rowland, Bellemare, Munos, AAAI2018
- Implicit Quantile Networks for Distributional Reinforcement Learning, Dabney, Ostrovski, Silver, Munos, ICML2018