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Deep RL is already a successful empirical research domain



Can we make it a fundamental research domain?

Related fundamental works: 
- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?



Can we make it a fundamental research domain?

Related fundamental works: 
- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?



Distributional-RL

Shows interesting interactions between RL and deep-learning

Outline:

● The idea of distributional-RL
● The theory
● How to represents distributions?
● Neural net implementation
● Results
● Why does this work?



Random immediate reward

Expected immediate reward

Random variable reward:



The return = sum of future discounted rewards

● Returns are often complex, multimodal
● Modelling the expected return hides this intrinsic randomness
● Model all possible returns!



The r.v. Return

= +10

Captures intrinsic randomness from:
● Immediate rewards
● Stochastic dynamics
● Possibly stochastic policy



The r.v. Return
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The expected Return

The value function

Satisfies the Bellman equation
  



Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

Does this equation make sense?



Example
Reward = Bernoulli (½), discount factor 𝛾 = ½

Bellman equation: , thus V = 1
 

Return                                     Distribution?
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               (rewards = binary expansion of a real number)



Example
Reward = Bernoulli (½), discount factor 𝛾 = ½

Bellman equation: , thus V = 1
 

Return                                     Distribution?

Distributional Bellman equation: 

In terms of distribution: 



Distributional Bellman operator

Does there exists a fixed point?



Properties
Theorem [Rowland et al., 2018]

  is a contraction in Cramer metric 

Theorem [Bellemare et al., 2017]

 is a contraction in Wasserstein metric, 

(but not in KL neither in total variation)
Intuition: the size of the support shrinks. 



Distributional dynamic programming
Thus         has a unique fixed point, and it is 

Policy evaluation:
For a given policy 𝜋, iterate                            converges to



Distributional dynamic programming
Thus         has a unique fixed point, and it is 

Policy evaluation:
For a given policy 𝜋, iterate                            converges to

Policy iteration:
● For current policy       , compute
● Improve policy

 

Does            converge to the return distribution for the optimal policy? 
             



Distributional Bellman optimality operator

Is this operator a contraction mapping?



Distributional Bellman optimality operator

Is this operator a contraction mapping?

No!
It’s not even continuous



The dist. opt. Bellman operator is not smooth

Consider distributions 

If 𝜀 > 0 we back up a bimodal distribution

If 𝜀 < 0 we back up a Dirac in 0

Thus the map                        is not continuous 



Theorem [Bellemare et al., 2017]

if the optimal policy is unique, then the iterates
converge to 

Intuition: The distributional Bellman operator preserves the mean, thus 
the mean will converge to the optimal policy        eventually. If the policy 
is unique, we revert to iterating        , which is a contraction.  

Distributional Bellman optimality operator



How to represent distributions?

● Categorical 

● Inverse CDF for specific quantile levels

● Parametric inverse CDF 
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Categorical distributions

Distributions supported on a finite support 

Discrete distribution  

z0 z1 z2 …                 zn



Projected Distributional Bellman Update

Transition



Discount / Shrink

Projected Distributional Bellman Update



Reward / Shift

Projected Distributional Bellman Update



Projected Distributional Bellman Update

Fit / Project



Projected distributional Bellman operator

Let           be the projection onto the support (piecewise linear interpolation)

Theorem:                          is a contraction (in Cramer distance)

Intuition:          is a non-expansion (in Cramer distance). 

Its fixed point           can be computed by value iteration

Theorem: [Rowland et al., 2018]



Projected distributional Bellman operator

Policy iteration: iterate
- Policy evaluation:

- Policy improvement:   

Theorem: Assume there is a unique optimal policy. 
  converges to           , whose greedy policy is optimal. 



Categorical distributional Q-learning

Observe transition samples

Update: 

Theorem  
Under the same assumption as for Q-learning, 
assume there is a unique optimal policy      , 
then                     and the resulting policy is optimal.

 

[Rowland et al., 2018]



DeepRL implementation

 



DQN [Mnih et al., 2013]



C51DQN [Bellemare et al., 2017]



C51 (categorical distributional DQN)

1. Transition x, a → x’

2. Select best action at x’

3. Compute Bellman backup

4. Project onto support

5. Update toward projection 
(e.g., by minimize a kl-loss)



Categorical DQN

http://www.youtube.com/watch?v=Evpha7nubAg


Randomness from future choices



http://www.youtube.com/watch?v=d1yz4PNFUjI






Mean Median >human

DQN 228% 79% 24

Double DQN 307% 118% 33

Dueling 373% 151% 37

Prio. Duel. 592% 172% 39

C51 701% 178% 40

Results on 57 games Atari 2600 



Categorical representation

x

p0 p1 p2 … pn-1 

0
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… z0 + i𝚫z ...

Fixed support, learned probabilities



Quantile Regression Networks

x
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Fixed probabilities, learned support
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Inverse CDF learnt by Quantile Regression
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l2-regression

mean



l1-regression

median



¼-quantile-regression

¼-quantile



¾-quantile-regression

¾-quantile



many-quantiles-regression

many-quantiles



Inverse CDF learnt by Quantile Regression
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Quantile Regression DQN



Quantile Regression = projection in Wasserstein!
(on a uniform grid)
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QR distributional Bellman operator

Theorem:                             is a contraction (in Wasserstein)       [Dabney et al., 2018]

Intuition: quantile regression = projection in Wasserstein

Reminder:
●          is a contraction (both in Cramer and Wasserstein)

●                 is a contraction (in Cramer)



DQN



C51DQN



QR-DQNC51DQN



Quantile-Regression DQN

Mean Median

DQN 228% 79%

Double DQN 307% 118%

Dueling 373% 151%

Prio. Duel. 592% 172%

C51 701% 178%

QR-DQN 864% 193%



Implicit Quantile Networks (IQN)

 

Learn a parametric inverse CDF
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QR-DQNC51DQN



QR-DQNC51 IQNDQN



Implicit Quantile Networks for TD



http://www.youtube.com/watch?v=zdh_BTOcVYs&t=48
http://www.youtube.com/watch?v=j7QQ11fls6g&t=161
http://www.youtube.com/watch?v=QZ-JjSwBN-Q
http://www.youtube.com/watch?v=FWGA-4dqrqY&t=60
http://www.youtube.com/watch?v=J7CS51NSpYs&t=78
http://www.youtube.com/watch?v=ZtqvnzKU048&t=400


Implicit Quantile Networks

Mean Median Human starts

DQN 228% 79% 68%

Prio. Duel. 592% 172% 128%

C51 701% 178% 116%

QR-DQN 864% 193% 153%

IQN 1019% 218% 162%



Implicit Quantile Networks

Mean Median Human starts

DQN 228% 79% 68%

Prio. Duel. 592% 172% 128%

C51 701% 178% 116%

QR-DQN 864% 193% 153%

IQN 1019% 218% 162%

Rainbow 1189% 230% 125%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...



Why does it work?

● In the end we only use the mean of these distributions 



Why does it work?

● In the end we only use the mean of these distributions

When we use deep networks, maybe:

● Auxiliary task effect:
○ Same signal to learn from but more predictions
○ More predictions → richer signal → better representations
○ Reduce state aliasing (disambiguate different states based on return)

● Density estimation instead of l2-regressions
○ RL uses same tools as deep learning
○ Lower variance gradient

● Other reasons? 



Distributional RL

Agents:
DQN, A3C, Impala,
DDPG, TRPO, PPO, ...

Policy:
- Risk-neutral
- Risk seeking/averse
- Exploration: (optimism, 
Thompson sampling)

Distributional loss
- Wasserstein
- Cramer
- other?

Convergence analysis
- Contraction property
- Control case
- SGD friendly

Algorithms:
- Value-based
- Policy-based

Distribution over
- Returns
- Policies

Deep Learning impact:
- Lower variance gradients
- Richer representations

Other:
- State aliasing
- Reward clipping
- Undiscounted RL

Environments
Atari, DMLab30, 
Control suite, Go,...

Theory

Algorithms Evaluation

Deep Learning

Representation of distributions
- Categorical
- Quantile regression
- Mixture of Gaussians
- Generative models
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