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Deep RL is already a successful empirical research domain
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Can we make it a fundamental research domain?

Related fundamental works:

- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?



Can we make it a fundamental research domain?

Related fundamental works:

- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?



Distributional-RL

Shows interesting interactions between RL and deep-learning

Outline:

The idea of distributional-RL
The theory

How to represents distributions?
Neural net implementation
Results

Why does this work?



Random immediate reward

2,2 LUXURY Expected immediate reward
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Random variable reward:

| —2000 w.p. 1/36
R(z) = { 200 w.p. 35/36




The return = sum of future discounted rewards
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e Returns are often complex, multimodal
e Modelling the expected return hides this intrinsic randomness
e Model all possible returns!



Ther.v. Return Z™(x,a)

T o
Z’)’tn =+10
t=0

Captures intrinsic randomness from:

e Immediate rewards
e Stochastic dynamics
e Possibly stochastic policy



Ther.v. Return Z™(x,a)
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Z" (CC, a’) — ZtZO ’YtT(ZI}t, at) |m0:m,ao=a,ﬂ'



The expected Return

The value function Q™ (x,a) = E[Z™ (x, a)]

Satisfies the Bellman equation
Q" (z,a) = E[r(z,a) +7Q" (2, a’)]

where ' ~ p(-|z,a) and a’ ~ w(-|z")




Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

7" (z,a) =2 R(xz,a) +~vZ7 (2, a")

where =’ ~ p(-|z,a) and a’ ~ 7(:|z")

Does this equation make sense?



Example

Reward = Bernoulli (%), discount factor y = %2

Bellman equation: |V = % 1 %V thus V = 1

Return [/ = Z 2_th Distribution?
£>0



Example

@R:{ 1 w.p. 1/2
Reward = Bernoulli (*2), discount factor y = %% 0 w.p. 1/2
Bellman equation: |V = % 1 %V thus V = 1 Q

Return Z:ZQ—th Distribution? ([0, 2])

t>0 : .
- (rewards = binary expansion of a real number)



Example

R =
Reward = Bernoulli (72), discount factor y = 72 @

Bellman equation: |V = % 1 %V thus V = 1 Q

Return 7 — Z 2~t*R, Distribution? L{([O, 2])

>0
Distributional Bellman equation: 7 — B(%) + %Z
o 1
In terms of distribution: n(z) = 5 (6(0) +6(1)) = 2n(22)

=n(22) +n(2(z — 1))



Distributional Bellman operator

"7z R(z,a) +vZ(x',a)
R(z,a) +~vZ(x',a)

Does there exists a fixed point?



Properties
Theorem [Rowland et al., 2018]

Tﬂ' is a contraction in Cramer metric

BxY) = /R (Fx (1) —Fy(t))2dt>1/ i

Theorem [Bellemare et al., 2017]

[ '™is a contraction in Wasserstein metric,

1/p

w(X,¥) = ([ (50 - ) ar)

(but not in KL neither in total variation)
Intuition: the size of the support shrinks.

Wasserstein



Distributional dynamic programming
Thus Tﬂ-has a unique fixed point, and it is Zﬂ-

Policy evaluation: Y
For a given policy , iterate // «— "['™ // convergesto /7 \_



Distributional dynamic programming
Thus Tﬂ-has a unique fixed point, and it is Zﬂ-

Policy evaluation:

For a given policy =, iterate // <— '™ // convergesto // ™ \.-./

Policy iteration:
e For current policy Tk, compute // Tk
e Improve policy
Tr+1(T) = arg max, E[Z™ (z, a)] C? 3

\‘\

Does / ™k converge to the return distribution for the optimal policy?



Distributional Bellman optimality operator

TZ(z,a) L r(z,a) +vZ(z', 7wz (x"))

where =’ ~ p(-|z,a) and 7z (2') = argmax, E[Z(z',a’)]

|s this operator a contraction mapping?



Distributional Bellman optimality operator

TZ(z,a) L r(z,a) +vZ(z', 7wz (x"))

where =’ ~ p(-|z,a) and 7z (2') = argmax, E[Z(z',a’)]

|s this operator a contraction mapping?

=

No! L Y

It's not even continuous ‘ '



The dist. opt. Bellman operator is not smooth

Consider distributions Ze

If ¢ > 0 we back up a bimodal distribution
If ¢ < 0 we back up a Diracin O

Thus the map Z, +— I'Z, is not continuous



Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

AT~ AR
if the optimal policy is unique, then the iterates | @@J
Zk-+1 +— TZ; convergetoZ7r |

Intuition: The distributional Bellman operator preserves the mean, thus
the mean will converge to the optimal policy 7* eventually. If the policy
IS unique, we revert to iterating TW*, which is a contraction.



How to represent distributions?

e C(Categorical

e Inverse CDF for specific quantile levels

e Parametric inverse CDF




Categorical distributions

Distributions supported on a finite support {zl, ce zn}

Discrete distribution {p;(x,a)}1<i<n

Z(iIZ, a) — sz'(ili, a’)dzz



Projected Distributional Bellman Update

Transition

vP" 7




Projected Distributional
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Projected Distributional Bellman Update

Pz ~P"Z

(a)

+vP"Z
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Reward / Shift




Projected Distributional Bellman Update

P"Z

R+~P"Z
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(b)

IL,T"Z

(d)

Fit / Project




Projected distributional Bellman operator

Let II,, be the projection onto the support (piecewise linear interpolation)

Theorem:;

I1,,’T"is a contraction (in Cramer distance)

Intuition: Hn is a non-expansion (in Cramer distance).

Its fixed point /., can be computed by value iteration /Z <— 11,7 Z

Theorem:;

03(Zn, Z7) <

1
(1 =)

2 v —

[Rowland et al., 2018]



Projected distributional Bellman operator

Policy iteration: iterate
Policy evaluation: /. = 11,, T7* Z,

Policy improvement: mx+1(z) = argmaxE[Z™* (z, a)]
a

Theorem:

Assume there is a unique optimal policy.
Zk converges to Zg , Whose greedy policy is optimal.




Categorical distributional Q-learning

r
Observe transition samples T4, Q¢ - |

Update:
Z($t, at) = (]_ — Ozt)Z(ZBt, (lt) -+ Oétnc(’l"t -+ ’YZ(Q?t_|_1, 7Tz(£lft_|_1))

Theorem

Under the same assumption as for Q-learning,
assume there is a unique optimal policy ™ [Rowland et al., 2018]
then Z — Z,,Z[* and the resulting policy is optimal.




DeepRL implementation



DQN [Mnih et al., 2013]

Actions




[Bellemare et al., 2017]

Q DeepMind



C51 (categorical distributional DQN)

Z(z' ay) Z('; az) Z(x',a3)
1. Transitionx,a — X
2. Select best action at x’

3. Compute Bellman backup

4. Project onto support

5. Update toward projection
(e.g., by minimize a kl-loss)



Categorical DQN



http://www.youtube.com/watch?v=Evpha7nubAg

Randomness from future choices
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http://www.youtube.com/watch?v=d1yz4PNFUjI
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Results on 57 games Atari 2600

Mean Median >human
DQN 228% 79% 24
Double DQN 307% 118% 33
Dueling 373% 151% 37
Prio. Duel. 592% 172% 39
C51 701% 178% 40




Categorical representation
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Quantile Regression Networks

Fixed [probabilities, learned [support
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Inverse CDF learnt by Quantile Regression




|2-regression

loss = x

mean



I1-regression

: : loss = |x|

median



Ya-quantile-regression

1
1% for x > 0
§|4 loss = ;

— 7% for x < 0

A~

Ya-quantile




%-quantile-regression

3
—x, for x > 0
4
loss =
1

——x, f >0
4:13, or r >

/A .

¥a-quantile




many-quantiles-regression

W Tx, for x > 0
=\ loss =
(t — D)x, for x >0

many-quantiles



Inverse CDF learnt by Quantile Regression




Quantile Regression DQN
20 ZT (xh aft)

z' ~ ZT(ajt—I—lv CL*)

575 = Tt + ”YZ, — Z
QR loss: p,(6) = 6(7 — [5<0)



Quantile Regression = projection in Wasserstein!

(on a uniform grid)




QR distributional Bellman operator

Theorem:

HQRTW is a contraction (in Wasserstein)

Intuition: quantile regression = projection in Wasserstein

Reminder:

e [’ is a contraction (both in Cramer and Wasserstein)

e II,,’T" is acontraction (in Cramer)

[Dabney et al., 2018]












Quantile-Regression DQN

Mean Median
DQN 228% 79%
Double DQN 307% 118%
Dueling 373% 151%
Prio. Duel. 592% 172%
C51 701% 178%

QR-DQN 864 % 193%




Implicit Quantile Networks (IQN)
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Implicit Quantile Networks for TD

T~U|0,1], 2z=Z (x¢, a)
T ~U[0,1], 2 =Z (vi41,a")

5t =T+ ’YZ, — <
QR loss: p-(0) = (7 — [5<0)



Return

016862
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W0
Return

Return Relu‘m



http://www.youtube.com/watch?v=zdh_BTOcVYs&t=48
http://www.youtube.com/watch?v=j7QQ11fls6g&t=161
http://www.youtube.com/watch?v=QZ-JjSwBN-Q
http://www.youtube.com/watch?v=FWGA-4dqrqY&t=60
http://www.youtube.com/watch?v=J7CS51NSpYs&t=78
http://www.youtube.com/watch?v=ZtqvnzKU048&t=400

Implicit Quantile Networks

Mean Median Human starts
DQN 228% 79% 68%
Prio. Duel. 592% 172% 128%
C51 701% 178% 116%
QR-DQN 864% 193% 153%
IQN 1019% 218% 162%




Implicit Quantile Networks

Mean Median Human starts
DQN 228% 79% 68%
Prio. Duel. 592% 172% 128%
C51 701% 178% 116%
QR-DQN 864% 193% 153%
IQN 1019% 218% 162%
Rainbow 1189% 230% 125%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...



Why does it work?

e |nthe end we only use the mean of these distributions



Why does it work?

e |nthe end we only use the mean of these distributions
When we use deep networks, maybe:

e Auxiliary task effect:

o Same signal to learn from but more predictions

o More predictions — richer signal — better representations

o Reduce state aliasing (disambiguate different states based on return)
e Density estimation instead of I12-regressions

o RL uses same tools as deep learning

o Lower variance gradient
e Other reasons?



Algorithms

Algorithms: Evaluation

- Value-based  pgents:
- Policy-based DQN, A3C, Impala,
DDPG, TRPO, PPO, ...

Policy:
- Risk-neutral

- Risk seeking/averse

- Exploration: (optimism,
Thompson sampling)
Distribution over Environments

- Ret.u.rns Atari, DMLab30,

- Policies Control suite, Go,...

Ogtletr: . Distributional RL

petateialiasing Deep Learning impact:

- Se\é\/_ard Clli)p(;nIgL - Lower variance gradients
naiscounte - Richer representations

Convergence analysis
- Contraction property Representation of distributions
- Control case Distributional loss Categc_)rical _
- SGD friendly _Wasserstein - Quantile regression
- Mixture of Gaussians
- Cramer - Generative models

Theory

- other?

Deep Learning
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