
How logic can analyze neural networks
using (another type of) learning

Thomas Schiex

October 2018
TSDL 2018, Toulouse, France



Superhuman performances of AI

Human beings
Easily rely on quick
“intuitions” (ill-defined
problems)
Extreme rigor is
painful and slow
(logic/arithmetic)

AIs (computers)
Accessible to some
“intuition” (problems
defined by data)
Fast and extreme
rigor is the default (1
billion op./sec)

It was expected that machines would show superhuman “logical reasoning” performances

1955: Newell & Simon “Logic Theorist” proved 38 of the 52 theorems in the Principia Mathematica
(Russel and Whitehead), and even corrected a proof in it.
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Then came complexity theory

NP-hard problems (Cook-Levin, 1970s)

Some problems seems intrisically hard (for computers at least)
Worst case asymptotic exponential time (P 6= NP)

n² × n² Sudoku

NP-complete, 9× 9: 1080

cases
1051 ages of the universe to
examine them all
Fast brute force will fail

Can be solved in milliseconds
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The modern world needs rigourous logic, more than ever

Technological progress
Increasingly complex useful objects planes, computers, software, cars, AIs
That must be highly reliable (lives at stake)
We cannot fully get them under control anymore

Increasing system complexity

Hardware: Pentium FDIV bug (1994, 3.1 million transistors)
Software: the Therac-25 (radiation-therapy) kills 6 patients





Propositional logic as an example (SAT)

SAT
1 A set of Boolean variables xi

2 A set of clauses (disjunction of variables or negation of) (¬x1 ∨ x7)
3 Must satisfy all clauses (or prove impossible)

Sudoku
1 cell (i, j) contains k xijk true
2 At least one number per cell i, j (xij1 ∨ . . . ∨ xij9)
3 At most one number per cell i, j (∀k > k ′¬xijk ∨ ¬xijk′ )
4 Cell (i, j) and (i, j ′) must be different (¬xijk ∨ ¬xij′k )
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SAT is the simplest canonical NP-complete problem

More sophisticated/practical function description

propositions over theories SAT Modulo Theory (SMT)9

non Boolean variables Constraint Satisfaction, Constraint Programming26

numerical output Weighted MaxSAT20/CSP,5 Graphical models14

Mathematical programming/OR Mixed Integer Linear Programming ((M)ILP, QP,…)



What can we embrace with NP-complete problems?

NP-complete: can express all NP-complete problems

the logical puzzles you like (Sudoku, Nonograms…)
or not (configuration, scheduling, test pattern generation…)
robot planning
digital circuit verification (Bounded Model Checking)
or software verification (FOL, grounding, abstraction)

NP-complete, so intractable

Standard argument for less realistic problem reformulation, heuristics or stochastic search

Real SAT instances with millions of variables/clauses can be solved (with a proof)
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robot planning (Rosetta-Philæ probe plan, CP, LAAS/Toulouse)
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IBM Bounded Model Checking SAT instance (SATLIB)

p cnf 51639 368352
-1 7 0
-1 6 0
-1 5 0
-1 -4 0
-1 3 0
-1 2 0
-1 -8 0
-9 15 0
-9 14 0
-9 13 0
-9 -12 0
-9 11 0
-9 10 0
-9 -16 0

51, 639 variables, 368, 352
constraints
¬x1 ∨ x7
¬x1 ∨ x6
. . .



10 Pages later

185 -9 0
185 -1 0
177 169 161 153 145 137 129
121 113 105 97 89 81 73 65 57
49 41 33 25 17 9 1 -185 0
186 -187 0
186 -188 0
…

(x177 ∨ x169 ∨ x161 ∨ x153 ∨ · · · ∨
x17 ∨ x9 ∨ x1 ∨ ¬x185)



4,000 Pages later

10236 -10050 0
10236 -10051 0
10236 -10235 0
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018
10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029
10030 10031 10032 10033 10034 10035 10036 10037 10086 10087 10088
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099
10100 10101 10102 10103 10104 10105 10106 10107 10108 -55 -54 53 -52
-51 50 10047 10048 10049 10050 10051 10235 -10236 0
10237 -10008 0
10237 -10009 0
10237 -10010 0
…



Finally 15,000 Pages later

-7 260 0
7 -260 0
1072 1070 0
-15 -14 -13 -12 -11 -10 0
-15 -14 -13 -12 -11 10 0
-15 -14 -13 -12 11 -10 0
-15 -14 -13 -12 11 10 0
-7 -6 -5 -4 -3 -2 0
-7 -6 -5 -4 -3 2 0
-7 -6 -5 -4 3 -2 0
-7 -6 -5 -4 3 2 0
185 0

Search space

250,000 ≈ 3.1 1015,051

Solved in one second

How dœs it work?
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NP-complete problem solvers: huge progress

SAT: Conflict Directed Clause Learning

Massive efficient reasoning7,8,25 + making assumptions
Lot of heuristics1,21

Safe learning from failure2,10,18,19,28,29 with Backward resolution
Efficient cache-friendly data-structures

International competitions (> 50, 000 benchmarks with many real problems)
Open source solvers (autocatalytic)
Strong European/French/Toulouse presence in theory, algorithms, solvers, applications1,4,12



(Deep) neural nets and safety critical settings

It dœsn’t seem too hard to fool a standard Convolutional Neural Neta

aChristian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint arXiv:1312.6199 (2013).
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Checking Neural nets with logic

First results in 2010 on “shallow” networks (robotics)23,24

More recent results on deep non naive convolutional neural nets3,22

Some in avionics with ReLU (ACAS Xu aircraft collision avoidance system13,16)
(M)ILP, SMT(LI), global optimization27 and pure SAT22

Properties
Reachability, Local/global
robustness (adversarial
manipulations), Invertibility,
Equivalence



From deep Neural Nets to SAT

Binarized Deep NN: ±1 activations/weights6

Still powerful, used in embedded systems for their speed
Lin: affine transformation with learnt binary weights (float bias).
Bn: (Batch normalization) rescaling with learnt floats.
Bin: binarization using the Sign function.

A learnt block can be described as a MILP/ILP/SMT(LI), SAT formulaa

aNina Narodytska et al. “Verifying properties of binarized deep neural networks”. In: arXiv preprint arXiv:1709.06662 (2017).
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How can we check robustness to adversarial manipulation?

Check satisfiability of a SAT formula that combines

a SAT description of the NN behavior
a SAT description of a valid input image
a SAT description of bounded manipulation of it
a SAT formula that forces the output to a wrong class

Robustness checking

if the formula has a solution: this is a certificate of manipulability (repair)
else we have a proof of robustness



In practice on MINST

4 blocks BNN with 100 to 200 neurons per layer, L∞ norm
Millions of clauses: Glucose1 certifies local (non) robustness for most input in < 5′ CPU time

Can also prove that some network are locally robust



Take away messages

NP is not exactly what we tend to think

AI, OR and CS have made drastic progress in their reasoning capacities
For SAT, this progress also comes from logical learning

Differentiable and non differentiable AI together

Logic can analyze and exploit learnt models (not only Neural Nets)
Intuition can help logic without tainting it (guidance)
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2017: proving an “alien” theorem?

A conjecture in combinatorics ∞
When one splits N in 2, one part must contain a Pythagorean triple (a2 = b2 + c2)

No known proof, puzzled mathematicians for decades (one offered a 100 $ reward)

SAT solver proof11,17

200TB proof, compressed to 86GB (stronger proof system)a

aOliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).
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