User Tools

Site Tools


public:res-ens:dmsml18:dmsml18

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
public:res-ens:dmsml18:dmsml18 [2019/11/09 18:58] acarlierpublic:res-ens:dmsml18:dmsml18 [2023/07/20 10:00] (current) – external edit 127.0.0.1
Line 18: Line 18:
  
 == Slides == == Slides ==
-{{:public:res-ens:dmsml18:preamble.pdf|Preamble}} +{{ :public:res-ens:dmsml18:intro.pdf |}}
  
 == Lab - Tutorial == == Lab - Tutorial ==
Line 25: Line 24:
 The first labs consist in tutorials to get familiar with PyTorch. The first labs consist in tutorials to get familiar with PyTorch.
  
-First, it is necessary to install the following packages (using anaconda) +First, it is necessary to connect to [[https://colab.research.google.com|Google Colab]]. **This step requires a Google account**.
-pip install jupyter +
-conda install numpy +
-conda install pytorch torchvision -c pytorch +
-pip install matplotlib+
  
-Then download the notebooks (right click, download as), run jupyter, and follow the tutorials. +Then go to [[https://drive.google.com/open?id=1ADe_p_nZ81HCNcIMy5nk9Izp23izXVVs 
-[[http://carlier.perso.enseeiht.fr/01-tensor_tutorial.ipynb|Tutorial 1]]+|the lab repository]]. You can access 6 tutorials, to be completed sequentially. 
 + 
 +Save the tutorials into your own Google Drive, and then open them using Google Colab. Each tutorial is a Jupyter notebook, with instructions and example code, as well as exercises. The code will run remotely on a virtual machine.
  
  
Line 40: Line 37:
 == Lecture time: == == Lecture time: ==
  
-Tuesday Nov 202018, 5:30pm-9:30pm Hanoi Time +Tuesday Nov 122019, 5:30pm-9:30pm Hanoi Time 
  
 Multi-layer perceptrons Multi-layer perceptrons
  
 == Lab - Tutorial == == Lab - Tutorial ==
-[[http://carlier.perso.enseeiht.fr/02-autograd_tutorial.ipynb|Tutorial 2]] +Tutorials and 3
-[[http://carlier.perso.enseeiht.fr/03-optimization_tutorial.ipynb|Tutorial 3]]+
  
  
Line 55: Line 51:
 == Lecture time: == == Lecture time: ==
  
-Wednesday Nov 212018, 5:30pm-9:30pm Hanoi Time +Wednesday Nov 132019, 5:30pm-9:30pm Hanoi Time 
  
 Training Neural Networks Training Neural Networks
  
 == Lab - Tutorial == == Lab - Tutorial ==
-[[http://carlier.perso.enseeiht.fr/04-gradientdescent.ipynb|Tutorial 4]] +Tutorials and 5
-[[http://carlier.perso.enseeiht.fr/05-mnist_tutorial.ipynb|Tutorial 5]]+
  
  
Line 68: Line 63:
 == Lecture time: == == Lecture time: ==
  
-Thursday Nov 222018, 5:30pm-9:30pm Hanoi Time +Thursday Nov 142019, 5:30pm-9:30pm Hanoi Time 
  
 Training Neural Networks in practice Training Neural Networks in practice
Line 77: Line 72:
 == Lecture time: == == Lecture time: ==
  
-Friday Nov 232018, 5:30pm-9:30pm Hanoi Time +Friday Nov 152019, 5:30pm-9:30pm Hanoi Time 
  
 Convolutional Neural Networks Convolutional Neural Networks
  
-[[http://carlier.perso.enseeiht.fr/06-mnist-conv-tutorial.ipynb |Tutorial 6]]+{{ :public:res-ens:dmsml18:3_cnn.pdf Lecture slides in french }} 
 + 
 +Tutorial 6 
 + 
 + 
 +===== Lecture #6 ===== 
 + 
 +== Lecture time: == 
 + 
 +Saturday Nov 16, 2019, 5:30pm-9:30pm Hanoi Time  
 + 
 +A glimpse on the challenges of deep learning. {{ :public:res-ens:dmsml18:class6.pdf | Slides}}
  
 +{{ :public:res-ens:dmsml18:sujet_2018.pdf |Last year's exam}}
public/res-ens/dmsml18/dmsml18.1573322285.txt.gz · Last modified: 2023/07/20 09:59 (external edit)