Document Indexation and Multimedia Retrieval

Axel Carlier, Axel.Carlier@enseeiht.fr

Information Retrieval Basics: Agenda

- Information Retrieval Searching
- Information Retrieval Model Reminder
- Evaluation

Information Retrieval Basics: Searching

A user has an information need, which needs to be satisfied.

- Two different approaches:
 - -Browsing
 - -Searching

Searching & Browsing

Searching

- Explicit information need
- Definition through "query"
- Result lists
- •e.g. Google

Browsing

- Not necessarily explicit need
- Navigation through repositories

Browsing

- Flat Browsing
 - -User navigates through set of documents
 - -No implied ordering, explicit ordering possible
 - -Examples: One single directory, one single file
- Structure Guided Browsing
 - -An explicit structure is available for navigation
 - -Mostly hierarchical (file directories)
 - -Can be generic digraph (WWW)
 - -Examples: File systems, World Wide Web

Information Retrieval Basics: Agenda

- Information Retrieval Searching
- Information Retrieval Model Reminder
- Evaluation

Information Retrieval System Architecture

Aspects

- Query & languages
- IR models
- Documents
- Internal representation
- Pre- and post-processing
- Relevance feedback
- HCI

Information Retrieval Models

- Boolean Model
 - -Set theory & Boolean algebra
- Vector Model
 - –Non binary weights on dimensions–Partial match
- Probabilistic Model
 - -Modeling IR in a probabilistic framework

An information retrieval model is a quadruple [D, Q, F, R(q_i, d_j)]

- *D* is a set of logical views (or representations) for the **documents** in the collection.
- Q is a set of logical views (or representations) for the user needs or **queries**.
- F is a **framework** for modeling document representations, queries and their relationship.
- $R(q_i, d_j)$ is a ranking function which associates a real number with a query q_i of Q and a document d_i of D.

Definitions *in Context of Text Retrieval*

- index term word of a document expressing (part of) document semantics
- weight w_{i,j} quantifies the importance of index term t_i for document d_j
- index term vector for document d_j (having t different terms in all documents):

$$d_{j} = (W_{1,j}, W_{2,j}, ..., W_{t,j})$$

Boolean Model

- Based on set theory and Boolean algebra

 Set of index terms
 Query is Boolean expression
- Intuitive concept:
 - -Wide usage in bibliographic system
 - -Easy implementation and simple formalisms
- Drawbacks:
 - -Binary decision components (true/false)
 - -No relevance scale (relevant or not)

Boolean Model: Example

Boolean Model: DNF

$$q = k_a \land (k_b \lor \neg k_c) \dots q_{dnf} = (1,1,1) \lor (1,1,0) \lor (1,0,0)$$

- Express queries in *disjunctive normal form* (disjunction of conjunctive components)
- Each of the components is a binary weighted vector associated with (k_a, k_b, k_c)

• Weights
$$w_{i,j} \in \{0, 1\}$$

Boolean Model: Ranking function

$$sim(d_j, q) = \begin{cases} 1 & \text{if } \exists q_{cc} | (q_{cc} \in q_{dnf}) \land (\forall_{k_i}, g_i(d_j) = g_i(q_{cc})) \\ 0 & \text{otherwise} \end{cases}$$

• similarity is one if one of the conjunctive components in the query is exactly the same as the document term vector.

Boolean Model

- Advantages

 Clean formalisms
 Simplicity
- Disadvantages
 - -Might lead to too few / many results
 - –No notion of **partial match**
 - -Sequential ordering of terms not taken into account.

Vector Model

- Integrates the notion of partial match
- Non-binary weights (terms & queries)
- Degree of similarity computed

$$d_{j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$
$$q = (w_{1,q}, w_{2,q}, ..., w_{t,q})$$

Vector model: Similarity

Vector Model: Example

Another Example:

- Document & Query:
 - -D = "The quick brown fox jumps over the lazy dog"
 - -Q = "brown lazy fox"
- Results:

Term weighting: TF*IDF

Term weighting increases retrieval performance

- Term frequency
 - -How often does a term occur in a document?
 - Most intuitive approach
- Inverse Document Frequency
 - –What is the information content of a term for a document collection?
 - -Compare to Information Theory of Shannon

Example: IDF 300 documents corpus

Definitions: Normalized Term Frequency

 $f_{i,j} = \frac{freq_{i,j}}{\max_{l}(freq_{l,j})} \dots \text{ normalized term frequency}$

 $freq_{i,j}$... raw term frequency of term *i* in document *j*

- Maximum is computed over all terms in a document
- Terms which are not present in a document have a raw frequency of 0

Definitions: Inverse Document Frequency

 $idf_i = \log \frac{N}{n_i}$... inverse document frequency for term *i*

 $N \dots$ number of documents in the corpus

 n_i ... number of document in the corpus which contain term *i*

- Note that *idf*_i is independent from the document.
- Note that the whole corpus has to be taken into account.

Why log(...) in IDF?

TF*IDF

- TF*IDF is a very prominent weighting scheme
 - –Works fine, much better than TF or Boolean
 - -Quite easy to implement

$$w_{i,j} = f_{i,j} \operatorname{Aog} \frac{N}{n_i}$$

Weighting of query terms

$$w_{i,q} = (0.5 + \frac{0.5 \times f_{i,q}}{\max_{l}(f_{l,q})}) \times \log \frac{N}{n_{i}}$$

- Also using IDF of the corpus
- But TF is normalized differently -TF > 0.5
- Note: the query is not part of the corpus!

Vector Model

- Advantages
 - –Weighting schemes improve **retrieval performance**
 - -Partial matching allows retrieving documents that **approximate query** conditions

Simple example (i)

- Scenario
 - -Given a document corpus on birds: nearly each document (say 99%) contains the word bird
 - -someone is searching for a document about sparrow nest construction with a query **"sparrow bird nest construction"**
 - -Exactly the document which would satisfy the user needs does not have the word "bird" in it.

Simple example (ii)

- TF*IDF weighting
 - knows upon the low discrimative power of the term bird
 - -The weight of this term is near to zero
 - -This term has virtually no influence
 - -on the result list.

- Given a document collection ...
- Find the results to a query ... –Employing the Boolean model –Employing the vector model (with TF*IDF)

Exercise

- Document collection (6 documents)
 - Sparrow, blackbird, bird, bluebird, finch, falcon, flight
 - Sparrow, bird, flight, nest, blackbird, blackbird, blackbird
 - Cuckoo, nest, nest, egg, egg, egg, flight, blackbird, blackbird, bird
 - Amsel, magpie, magpie, throttle, bird, egg
 - falke, katze, nest, nest, flug, vogel
 - Sparrow, sparrow, construction, nest, egg
- Queries:
 - sparrow, bird, nest, construction
 - blackbird, egg, nest

Query Modification

- Query expansion
 - -General method to increase either
 - number of results or
 - accuracy
 - -Query itself is modified:
 - Terms are added (co-occurrence, thesaurii)

Relevance Feedback

- Popular Query Reformulation Strategy:
 - -User gets list of docs presented
 - –User marks relevant documents
 - Typically~10-20 docs are presented
 Query is refined, new search is issued
- Proposed Effect:
 - -Query moves more toward relevant docs
 - -Away from non relevant docs
 - -User does not have to tune herself

Information Retrieval Basics: Agenda

- Information Retrieval Searching
- Information Retrieval Model Reminder
- Evaluation

Retrieval Evaluation: Motivation

Retrieval Evaluation

- Comparability issues:
 - -Test collections
 - -Experts assessing retrieval performance
 - -Metrics
 - What's good? / What's bad?
- Overall problem:
 - -What is relevant?

Metrics: Precision & Recall

Within a document collection *D* with a given query *q*

- |R| .. num. of relevant docs
- |A| .. num. of found docs
- |Ra| .. num. found & relevant

Metrics: Precision

Precision = $\frac{|Ra|}{|A|} = \frac{\text{found relevant docs}}{\text{found docs}}$

- Gives % how many of the actual found documents have been relevant
- Between 0 and 1 –Optimum: 1 ... all found docs are relevant

Metrics: Recall

$$\operatorname{Recall} = \frac{|Ra|}{|R|} = \frac{\operatorname{found relevant docs}}{\operatorname{relevant docs}}$$

- Gives % how many of the actual relevant documents have been found
- Between 0 and 1 –Optimum: 1 ... all relevant docs are found

Example

- D = {D00, D01, ... D99}
- Query 1:
 - -Result Set 1: {D2, D14, D25, D76, D84, D98}
 - –Relevant Docs {D1, D2, D14, D22, D23, D25, D84, D89, D90, D98}
- Query 2:
 - -Result Set 1: {D10, D14, D60, D63, D77, D95}
 - –Relevant Docs {D10, D14}

Recall vs. Precision Plot

- •Assumption:
 - Result list is sorted by descending relevance
 - -User investigates result list linearly
 - when recall changes ...
- Approach:
 - -Map different states to graph

F-Measure

$$E(j) = 1 - \frac{1 + b^2}{\frac{b^2}{recall(j)} + \frac{1}{precision(j)}}$$

 $F(j) = 1 - E(j) \dots$ van Rijsbergen

- Lower values -> lower performance
- If b=1, F(j) is average
- If b=0, F(j) is precision
- If b=inf, F(j) is recall
- b=2 is a common choice

Mean Average Precision (MAP)

- Find average precision for each query
- Compute mean AP over all queries

 Macroaverage: All queries are considered
 equal
- For average recall-precision curves
 - Average at standard recall points

Mean Average Precision (MAP)

- Find average precision for each query
- Compute mean AP over all queries

 Macroaverage: All queries are considered
 equal
- For average recall-precision curves
 - Average at standard recall points

Mean Average Precision (MAP)

- Find average precision for each query
- Compute mean AP over all queries

 Macroaverage: All queries are considered
 equal
- For average recall-precision curves
 - Average at standard recall points

MAP

$$AP(q) = \frac{1}{N_R} \sum_{n=1}^{N_R} P_q(R_n), \quad MAP = \frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} AP(q),$$

src. Deselaers, T., Keysers D., and Ney H., "Features for Image Retrieval: An Experimental Comparison", Information Retrieval, vol. 11, issue 2, Springer 2008.

Precision @ 10

- Precision for the first 10 results
- Measures the quality of the first page
- Motivated by
 - -Subjective impression that they all should be relevant
 - Fact that many people examine only first page

True/False Positives/Negatives

Ground Truth

		Pertinent	Non Pertinent
System	Pertinent	True Positive (TP)	False positive (FP)
	Non Pertinent	False Negative (FN)	True Negative (TN)

Recall = TP / (TP + FN) False Positive Rate: FP% = FP / (FP + TN)

Receive Operator Characteristics (ROC) Curve: Recall vs. FP%

Area Under (ROC) Curve

http://gim.unmc.edu/dxtests/roc3.htm

Summary: Evaluation

- Lots of measures exist besides Precision & Recall
- Selection based on Use Case & Scenario
- Initiatives & Collections allow comparison
- Also user centered evaluation methods exist
- collections & initiatives are criticized:
 - Handling of outliers, significance of differences, ...

Preparation for labs

- Build your own image dataset
 - 50 images
 - 10 queries
 - Ground Truth for each query
 - Depict and explain in your report
- Be mindful of the challenges in image retrieval

• Scaling

Rotation

• Clutter

Occlusion

F

• Lightning

• 3D objects

• Lightning

