Class 6

Deep Learning: a glimpse of what is really happening

Overview

- **Deep** Convolutional Neural Networks
- The Deep Learning Zoo
- Generative Models
- Concluding Remarks

Overview

- Deep Convolutional Neural Networks
- The Deep Learning Zoo
- Generative Models
- Concluding Remarks

Deep Convolutional NN

- MNIST: 10 classes, 28x28 pixels
- ImageNet: 21841 classes, 256x256 pixels

Toilet paper, yacht, cup, cameleon...

LeNet Architecture

~60k parameters, 5 layers

AlexNet (2012)
~60M parameters, 8 layers

VGG (2014) ~138M parameters, up to 19 layers

Inception (2014) ~7M parameters, 22 layers

A summary

DCNN - Model complexity

Object detection challenge

Object detection - results

Image Segmentation

DCNN Architecture for Segmentation

• U-Net

DCNN Architecture for Segmentation

New problems in Computer Vision

Human Parsing

Image Captioning

two men playing tennis. man holding a tennis racket. tennis racket in mans hand. man with short hair. tennis racket in mans hand. man wearing a white shirt, a man with short hair, tennis racket in mans hand, a red and black bag, a tennis racket, a white tennis net, a black fence, tennis racket in mans hand, the man is wearing glasses.

 3D reconstruction fron a single image

Overview

- **Deep** Convolutional Neural Networks
- The Deep Learning Zoo
- Generative Models
- Concluding Remarks

The Deep Learning Zoo

Deep Convolutional Network (DCN)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

Deep Residual Network (DRN)

Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

Machine (SVM) Neural Turing Machine (NTM)

http://www.asimovinstitute.org

Perceptron, FFNN

Auto-encoders

Auto-encoders

- Applications
 - Denoising
 - Dimension Reduction
 - Indexation

Recurrent Neural Networks

Long Short-Term Memory (LSTM)

Deep Residual Networks

Overview

- **Deep** Convolutional Neural Networks
- The Deep Learning Zoo
- Generative Models
- Concluding Remarks

Game theory Nash equilibrium

- Difficult to train...
- But useful in many applications

• Example Video

Overview

- **Deep** Convolutional Neural Networks
- The Deep Learning Zoo
- Generative Models
- Concluding Remarks

About AI, Deep Learning...

About AI, Deep Learning...

About AI, Deep Learning...

Challenges - Supervision

Challenges - Supervision

Challenges - Supervision

Ganin et al., 2015; 2016

Multiple Task Learning

What is Intelligence?

- Curiosity
- Adaptation to new situations
- Knowledge transfert

