
Jscript: an introduction

Lecture #2– A crash course in
JavaScript

First things first
•  JavaScript is not Java
•  It is the most popular client-side scripting

language
•  It can be (and has been) misused
•  It is rather unwieldy, which caused many toolkits

and libraries to emerge
•  It is object-based (but not purely OO)
•  It can be used (extensively) for event-driven

programming in web-based apps
•  It is the ‘J’ in AJAX
07/11/16	

Hands On!

•  What do you need?
– A browser! That’s it.

•  But we can do a bit better:
– Firebug console

–  JavaScript Runner Page
–  JavaScript shell from squarefree.com
– Eloquent JavaScript interactive book

– Codecademy interactive JavaScript course
– W3Schools JavaScript tutorial

07/11/16	

Examples and exercises

•  You can use the
companion web site for
the book “Programming
with JavaScript: Algorithms
and Applications for
Desktop and Mobile
Browsers”

•  http://javascript.cs.lmu.edu/

07/11/16	

Recipe for testing examples

1.  Open example in a text editor
2.  Open example in browser (+dev tools)
3.  Run example (understand what it does)
4.  Look at how it does it (using the dev tools)
5.  Learn more about libraries, methods, built-in

objects, etc.

6.  Change the example to make it behave differently
7.  Go back to 3

07/11/16	

JavaScript Object Fundamentals
•  In JavaScript, any value that is not a native data type

(Boolean, number, string, null or undefined) is an
Object.

•  Objects have properties, and properties have values.
•  An object literal is an expression defining a new

object.
•  Example:

var ride = {
make : “Yamaha”,
model : “V-Star Silverado 1100”,
year : 2005,
purchased = new Date(2005,3,12)

};

07/11/16	

JavaScript Object Fundamentals

•  After defining an object, you may access its
properties with either a dot or square brackets.

•  Example:
ride.make ! “Yamaha”

ride[“make”] ! “Yamaha”

07/11/16	

JavaScript Object Fundamentals

•  In JavaScript, the fundamental Object serves as the
basis for all other objects. (similar to other
languages)

•  However, at its basic level, the JavaScript Object
has little in common with the fundamental object
defined by most other OO languages.

07/11/16	

Creating a new Object

var shinyAndNew = new Object();

•  But what can we do with this new object?
–  It seemingly contains nothing: no information, no

complex semantics, nothing.

– Our brand-new, shiny object doesn’t get interesting
until we start adding things to it—things known as
properties.

07/11/16	

Properties of objects

•  Objects’ properties / elements / data members
can be created as needed.

•  Example:
var ride = new Object();

ride.make = 'Yamaha';
ride.model = 'V-Star Silverado 1100';
ride.year = 2005;

ride.purchased = new Date(2005,3,12);

07/11/16	

Properties of objects

•  Flexibility comes with a price…
•  Example:

ride.purchsaed = new Date(2005,3,12);
– Will actually create a new property!

07/11/16	

Objects and properties

•  An instance of the JavaScript Object, or simply an
object, is a collection of properties, each of which
consists of a name and a value.
– The name of a property is a string
– The value can be any JavaScript object, be it a Number,

String, Date, Array, basic Object, or any other JavaScript
object type (including, as we shall see, functions).

07/11/16	

Nested properties

•  Example:
var owner = new Object();
owner.name = 'Spike Spiegel';

owner.occupation = 'bounty hunter';
ride.owner = owner;

•  To access the nested property, we write this:
var ownerName = ride.owner.name;

07/11/16	

Object hierarchy

07/11/16	

Property reference operator

•  In many cases, the dot operator is inadequate, and
we must use the more general notation for
accessing properties.

•  The format of the general property reference
operator is:

object[propertyNameExpression]
– where propertyNameExpression is a JavaScript

expression whose evaluation as a string forms the
name of the property to be referenced.

07/11/16	

Property reference operator

•  Example - All three of the following references are
equivalent:

ride.make
ride['make']
ride['m'+'a'+'k'+'e']

•  So is this reference:
var p = 'make';
ride[p];

07/11/16	

Object literals / JSON syntax

•  Example:
var ride = {

make: 'Yamaha',

model: 'V-Star Silverado 1100',

year: 2005,
purchased: new Date(2005,3,12),

 owner: {
name: 'Spike Spiegel',

occupation: 'bounty hunter’
}

};

07/11/16	

Object literals / JSON syntax

•  We can also express arrays in JSON by placing the
comma-delimited list of elements within square
brackets.
– Example:

var someValues = [2,3,5,7,11,13,17,19,23,29,31,37];

07/11/16	

Objects as window properties

•  When the var keyword is used at the top level,
outside the body of any containing function, it’s
only a programmer-friendly notation for
referencing a property of the predefined JavaScript
window object.

•  Any reference made in top-level scope is implicitly
made on the window instance.

07/11/16	

Objects as window properties

•  All of the following statements, if made at the top
level (that is, outside the scope of a function), are
equivalent:

var foo = bar;
window.foo = bar;
foo = bar;

07/11/16	

JavaScript Objects

•  To summarize so far:

– A JavaScript object is an unordered collection of
properties.

– Properties consist of a name and a value.
– Objects can be declared using object literals.

–  Top-level variables are properties of window.

07/11/16	

Functions as first-class citizens
•  Functions in JavaScript are considered objects like any of

the other object types that are defined in JavaScript, such as
Strings, Numbers, or Dates.

•  Like other objects, functions are defined by a JavaScript
constructor — in this case Function — and they can be:
–  Assigned to variables
–  Assigned as a property of an object
–  Passed as a parameter
–  Returned as a function result
–  Created using literals

•  Because functions are treated in the same way as other
objects in the language, we say that functions are first-class
objects.

07/11/16	

Functions as objects

•  And perhaps the trickiest part…
– As with other instances of objects—be they Strings,

Dates, or Numbers—functions are referenced only
when they are assigned to variables, properties, or
parameters.

– Contrast the two snippets below:

07/11/16	

Functions as objects

•  If we add the statement:

•  A graphical representation would look like this:

07/11/16	

Functions as objects
•  Therefore, the following three statements are

equivalent:

•  Important: Function instances are values that can
be assigned to variables, properties, or parameters
just like instances of other object types.
–  And like those other object types, nameless

disembodied instances aren’t of any use unless
they’re assigned to a variable, property, or parameter
through which they can be referenced.

07/11/16	

Callback functions

•  Example:

•  Better version (used when there is no need for a
function instance to be assigned to a top-level
property:

07/11/16	

Function context

•  A more comprehensive
example:
– Can you tell which alert

messages will be
displayed each time?

– What happens if we add
a 5th alert:

07/11/16	

Function context

•  This example page clearly demonstrates that the
function context is determined on a per
invocation basis and that a single function can be
called with any object acting as its context.

•  As a result, it’s probably never correct to say that
a function is a method of an object.

•  It’s much more correct to state:
– A function f acts as a method of object o when o serves as

the function context of the invocation of f.

07/11/16	

Closures
•  A closure is a Function instance coupled with the local

variables from its environment that are necessary for
its execution.

•  When a function is declared, it has the ability to
reference any variables that are in its scope at the
point of declaration. (no surprises here)

•  But, with closures, these variables are carried along
with the function even after the point of declaration
has gone out of scope, closing the declaration.

•  The ability for callback functions to reference the
local variables in effect when they were declared is an
essential tool for writing effective JavaScript.

07/11/16	

Closures

•  Example

07/11/16	

Closures

•  It works! But how?
•  Although it is true that the block in which local is

declared goes out of scope when the ready
handler exits, the closure created by the
declaration of the function, which includes local,
stays in scope for the lifetime of the function.

07/11/16	

Closures

•  Another example
– Contrast this:

var withParentheses = function (s) {return "(" + s + ")";};
var withBrackets = function (s) {return "[" + s + "]";};
var withBraces = function (s) {return "{" + s + "}";};

– With this:
var delimitWith = function (prefix, suffix) {
 return function (s) {return prefix + s + suffix;}
};

var withParentheses = delimitWith("(", ")");
var withBrackets = delimitWith("[", "]");
var withBraces = delimitWith("{", "}");

07/11/16	

Events

•  A programming paradigm shift
•  Defining UI elements
•  (Programmatically) accessing UI elements
– The DOM

•  Event Handling
•  Event Objects and implementation details

•  Case study: Tic-Tac-Toe

07/11/16	

