
 

Real-time Direct Manipulation of Screen-based Videos 
Laurent Denoue, Scott Carter, Matthew Cooper, John Adcock  

FX Palo Alto Laboratory, Inc. 
3174 Porter Drive, Palo Alto, CA 94304 USA 
{denoue, carter, cooper, adcock}@fxpal.com   

 
ABSTRACT 
We describe direct video manipulation interactions applied 
to screen-based tutorials. In addition to using the video 
timeline, users of our system can quickly navigate into the 
video by mouse-wheel, double click over a rectangular 
region to zoom in and out, or drag a box over the video 
canvas to select text and scrub the video until the end of a 
text line even if not shown in the current frame. We 
describe the video processing techniques developed to 
implement these direct video manipulation techniques, and 
show how they are implemented to run in most modern web 
browsers using HTML5’s CANVAS and Javascript.  

Author Keywords 
direct manipulation; video processing; intelligent user 
interface; real-time; web browser; html5. 

ACM Classification Keywords 
H.5.2. User Interfaces 

INTRODUCTION 
Screen-based tutorial videos can help teach people how to 
program, how to use new software or web site, as well as 
how to perform a variety of other tasks. These videos can 
be screencasts (digital recordings of computer screens), 
recordings from specialized markup applications (e.g., 
Khan Academy videos), or even screen content extracted 
from live talks (e.g., using automated video analysis 
techniques [3]). Unfortunately, the standard video timeline 
is not optimal to navigate these types of video. Following 
work from [1], we describe direct video manipulation 
techniques that make it easy for users to watch and navigate 
such screen-based videos. Our techniques are purely image-
based and do not require hooks into the operating system. 

Our work in this paper focuses on three types of screen-
based video interactions: detecting scrolling regions in the 
video so that users can manipulate them directly using a 
mouse-wheel; detecting text areas so that users can  directly 
select text from the video canvas and paste it into a note-
taking application; and detecting regions-of-interest in the 
video so that users can  zoom into an important part of the 
video frame.  Examples include zooming a dialog box to 
better see what is typed inside, and perhaps copying and 
pasting this part of the video frame as an image for later 
review or note taking. 

DIRECT VIDEO CONTENT MANIPULATION 
Our system implements these interaction techniques using a 
client-side approach that runs on most modern browsers 
using HTML5 video, CANVAS and JavaScript to perform 
real-time video processing. In order to process video frames 
from a VIDEO tag inside our web page, the video is served 
through our proxy server that streams WebM or MP4 video 
from YouTube, solving the same-domain policy constraint. 

A timer is used to continuously draw video frames onto a 
CANVAS element that the user sees. We bind mouse 
listeners to receive mouse-wheel, double-click, and mouse 
down, move and up events. To speed up image processing 
in JavaScript, we process a scaled down version of the 
video frames, currently 50%.  

Image Processing for Region Detection 
The system needs to detect rectangular regions, scrolling 
areas and text regions. We first binarize the incoming frame 
using a simplified edge detector that reports 1 if the 
grayscale difference between two horizontally adjacent 
pixels is greater than 32 and 0 otherwise. This filter detects 
vertical edges in the image. We apply a similar filter on 
vertical pixels to detect horizontal edges. Edges are found 
by counting lines and columns where 1 is found more than 
40 times in a row or column. 

 
Figure 1. Left: binarized frame and red bars (top) showing the 
delta values computed with the previous frame. Right: image 
difference showing the bounding box (in white) used to restrict 
the region where the system computes the delta values for each 
column. 

When the user double clicks on the main canvas, the system 
looks for two vertical lines on the left and right of the click, 
and then two horizontal lines that form a rectangle with the 
given vertical lines. If a rectangle is found, the system starts 
a zooming animation that stretches the main CANVAS 
element by modifying its size and offset left and top, 
thereby giving the illusion that the video is being zoomed 

 
Copyright is held by the author/owner(s). 
IUI’13 Companion, March 19–22, 2013, Santa Monica, CA, USA. 
ACM 978-1-4503-1966-9/13/03. 

Session: Demonstrations IUI'13 Companion, March 19–22, 2013, Santa Monica, CA, USA

43



 

in. This step very fast as it is handled by the browser DOM 
and backed up by the graphics processing unit (GPU). 

Image Processing for Content Scroll Detection 
In order to detect scrollable regions, we compute the 
difference between the previous and current frame, both 
binarized in the first step. Vertical and horizontal projection 
profiles are computed to find the changed region (shown in 
white in Figure 1, right). We then compute the best 
correlation between vertically shifted pairs of pixel columns 
within this region, taken from the previous and current 
frame. If most columns agree on a similar shift, we use the 
average as the scroll value, and store the frame in an array 
along with the current video playback time and scroll value. 

When the user mouse-wheels over the video canvas within 
2 seconds after the last scroll was detected, we compute the 
cumulative scroll value corresponding to the drawn frame 
and pick the frame in the array that corresponds to a 
cumulative scroll less or greater than the current cumulative 
scroll, depending on the direction of the mouse-wheel. It 
appears that the video content magically scrolls up or down. 

 

 
Figure 2. Connected components and their bounding boxes are 
used to draw highlighted rectangles over the main video 
canvas, giving users the illusion that they are selecting text 
from the video canvas. 

Image Processing for Text Selection 
When the user clicks over the main canvas, the system a) 
binarizes the current video frame; b) computes the 
connected components and their bounding boxes using [2]; 
c) defines the initial selection box rectangle as 
{x,y,x+1,y+1} and visually highlights the boxes under this 
rectangle, giving the user the illusion of having selected this 
text. When the user expands her selection box, the system 
updates the corresponding boxes underneath, as shown in 
Figure 2. 

 

All the while, the video plays in the background and the 
system accumulates incoming frames that the user does not 
see. To her, it looks as if the video is paused. However, if 
she extends her selection past a region that does not include 
a connected component, the system looks into the 
accumulated frames to find one that contains a connected 
component under this new area. If found, it draws the frame 
over the main canvas, giving the illusion that the video 
advanced to this point in time in order to reveal more text 
on that line. 

When the user lifts the mouse pointer, the system copies the 
selected fragment as an image into a new hidden CANVAS 
element and generates a PNG image representation. 
Currently, this image can be pasted as is into a word 
processor, but could also be sent to an optical character 
recognition engine to extract its text content (e.g., [3]). 

CONCLUSION 
We described techniques to directly manipulate video 
content that allow users to 1) easily scroll up and down over 
a video to automatically rewind or fast-forward, 2) easily 
select text content from video frames, including automatic 
skipping of frames until the desired text segment is shown, 
and 3) automatic region detection to zoom into interesting 
areas of the video, such as rectangular areas that can 
correspond to common widgets such as windows and dialog 
boxes. The system performs these video processing tasks in 
real-time inside a modern web browser using HTML5 
video, CANVAS element and Javascript. We are working 
on overlaying cues to let users know they can scroll or 
select text by showing faded out versions of future frames. 
Other extensions could include tracking windows being 
moved over the video and navigating the video timeline 
accordingly, or listening to keyboard events such as 
backspace or cursor arrows to rewind or fast-forward the 
video to corresponding text elements.  

REFERENCES 
1. Dragicevic, P., Ramos, G., Bibliowitcz, J., 

Nowrouzezahrai, D., Balakrishnan, R., and Singh, K. 
2008. Video Browsing by Direct Manipulation. In 
Proceedings of ACM CHI 2008. 237-246. 

2. Fu Chang and Chun-jen Chen and Chi-jen Lu. A linear-
time component-labeling algorithm using contour 
tracing technique. Computer Vision and Image 
Understanding, 93(2). 2004. 206-220. 

3. Adcock, J., Cooper, M., Denoue, L., Pirsiavash, H., and 
Rowe, L.A. TalkMiner: A Lecture Webcast Search 
Engine. In Proceedings of ACM Multimedia 2010. 241-
250.

 
 
 

Session: Demonstrations IUI'13 Companion, March 19–22, 2013, Santa Monica, CA, USA

44


