
Content-Aware Dynamic Timeline for Video Browsing

Suporn Pongnumkul
Computer Science & Engineering

University of Washington
Seattle WA 98195

suporn@cs.washington.edu

Jue Wang
Adobe Systems

801 N. 34th Street
Seattle, WA 98103

juewang@adobe.com

Gonzalo Ramos
Microsoft Corporation

Michael Cohen
Microsoft Research

One Microsoft Way
Redmond, WA 98052

{gonzalo, mcohen}@microsoft.com

ABSTRACT
When browsing a long video using a traditional timeline slider
control, its effectiveness and precision degrade as a video’s
length grows. When browsing videos with more frames than
pixels in the slider, aside from some frames being inaccessi-
ble, scrolling actions cause sudden jumps in a video’s con-
tinuity as well as video frames to flash by too fast for one
to assess the content. We propose a content-aware dynamic
timeline control that is designed to overcome these limita-
tions. Our timeline control decouples video speed and play-
back speed, and leverages video content analysis to allow
salient shots to be presented at an intelligible speed. Our con-
trol also takes advantage of previous work on elastic sliders,
which allows us to produce an accurate navigation control.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Algorithms, Human Factors

Keywords: Timeline, Slider, Dynamic video skims

INTRODUCTION
Traditional video players support browsing, skimming and
seeking through a timeline control. The control provides
users a way to directly specify the video’s current frame and
a direct visualization of its location in the video’s timeline.
While simple and direct to use, timeline sliders’ functional-
ity and effectiveness degrade particularly for longer videos
where there are many more video frames than there are pix-
els along a slider. These cases not only make many video
frames unreachable, but also translate into scrolling actions
causing sudden jumps in a video’s continuity or video frames
to flash by too fast to be understandable.

We propose an enhanced timeline control, the content-aware
dynamic timeline, which enables high precision navigation
as well as fast browsing and seeking functionality.

Our control is influenced by elastic graphical interfaces such
as [5], where playback speed is dynamically adjusted as a
nonlinear function of the distance between the handle and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’10, October 3-6, 2010, New York City.
Copyright 2010 ACM 978-1-60558-745-5/09/10...$10.00.

the mouse pointer. We also borrow from the PVslider [9],
which uses the vertical distance between the cursor and the
control to adjust the control-display ratio. Our dynamic time-
line control presents a similar interactive behavior for precise
video frame selecting. However, unlike the aforementioned
work, the playback speed computed by the elastic function is
not used to directly determine the video frame-rate. Instead,
our timeline control employs a content-aware video skim-
ming method to present the user a meaningful abstraction of
the video when the user rapidly scrubs the video. By doing
this, we effectively decouple average video speed and frame-
to-frame playback speed, providing users discernable frames
as they skim through a video.

CONTENT-AWARE DYNAMIC TIMELINE
From informal observation of three users while they were
watching and interacting with online video content, we found
that, aside from simply watching a video, they engaged in
two distinct modes of interaction: (1) fast-speed skimming
through a long video, or (2) low-speed navigation in a small
section of the video. Fast skimming occurred in situations
where the user was unfamiliar with the video, and wanted
to get a quick overview of its content and identify some in-
teresting parts. Low-speed navigation occurred when users
wanted to accurately locate a specific frame or time code in
the video, e.g., the beginning of a scene, or a representative
frame of a shot. In long video browsing sessions, we ob-
served users engage in these two modes in concert and of-
ten switch between them. We also observed that at playback
speeds above eight times the normal rate, many videos lost
their temporal coherence to the point that they appeared more
like rapid sequences of random frames. With the above ob-
servations in mind, we set our design goals for the timeline
control to have the following properties:

1. Presenting a meaningful visual abstraction of the video
content in the fast skimming mode.

2. Providing accurate frame location in slow speed navigation
mode.

3. Being efficient at both fast- and low-speed browsing modes,
and allowing for a smooth transition between them.

In addition to the above goals, we also want to maintain a
clean design consisting of a single timeline slider without the
added clutter that summary slides of key frames or chapter
headings can introduce. In this section, we will first describe
how we make use of a nonlinear function to control the video
speed so as to allow a smooth transition between high-speed

browsing and low-speed frame seeking operations in a single
drag-and-pull interaction. Note that the video speed repre-
sents a desired speed as indicated by the user via the slider
interaction. Given the desired video speed, we are still free to
choose the sequence of frames to progress through the video
to achieve that speed on average. We show that by decou-
pling the video speed from the selected frames to playback,
our timeline presents an intelligible summarization of the un-
derlying video content even when quickly skimming through
the video.

Elastic Timeline
Our timeline has the same appearance as a traditional time-
line, when the user clicks on the slider, the video jumps to
the corresponding frame. However when the user drags the
handle and moves along the timeline, the handle does not
stay directly attached to the mouse pointer. Instead it follows
the mouse pointer though a nonlinear speed function. At any
time t, the current (desired) video speed Vs is determined
by two distances: the horizontal distance between the mouse
pointer and the current handle position dx, and the vertical
distance between the mouse pointer and the timeline horizon
dy . Similar to the elastic skimming slider proposed in [6], Vs
is a function of dx, similar in feel to connecting the mouse
pointer and the handle with a rubber band.

VVs

s
High‐speed browsing

smax
Low‐speed
browsing

s1

browsing

dx
s1

d1 d2 dmax

Figure 1: The function of normalized video speed Vs
vs. the normalized horizontal distance between the
mouse pointer and the handle dx.

The exact shape of the response function Vs(dx) is illustrated
in Figure 1. If dx < d1, we interpret it as an unintentional
move, in which the speed is reduced to zero. Beyond this
distance, Vs(dx) is designed to allow the user to interact with
the video in the two interaction modes we identified earlier,
and smoothly transition between them. In low-speed brows-
ing, the function maintains a constant low speed s1, as a user
keeps the mouse pointer close to the handle (d1 < dx < d2).
When the user pulls the mouse pointer far away (dx > dmax)
from the handle, the timeline enters the high-speed browsing
mode at a constant speed smax. This allows the system to
render a quick overview of the video content in a short period
of time. The video speed is linearly interpolated between s1
and smax.

In our implementation d1, d2 and dmax are set to be 0.001,
0.01 and 0.25, respectively, which are normalized distances
by using the total length of the slider as the normalizer. s1
is set to be 0.2 times normal speed to allow for slow mo-
tion playback. smax is normalized to the total length of the
video such that the whole video would play in 20 seconds,

i.e., smax = Tmax/20, where Tmax equals the totals length
of the video in seconds. These values are empirically cho-
sen through observation. Normalizing most parameters to
the lengths of the slider and video gives users similar brows-
ing experiences even when the length of the video or the size
of the control itself changes.

Once an initial Vs(dx) is determined, it is further modulated
by the vertical distance dy between the mouse pointer and
the timeline horizon as

Vs =
dx + λdy

dx
· Vs(dx). (1)

Since a comfortable video speed is subjective, and is depen-
dent on the video content, this design allows the user to adjust
the video speed by moving the mouse pointer up or down.
This is similar to the Zoomslider interface in [6] where mov-
ing mouse up and down changes the scale of the timeline.

Dynamic Video Skims
The elastic and the traditional timelines face similar prob-
lems as the video is played at high speed. In both sliders,
high-speed browsing will display a sequence of unrelated
frames, as the video is uniformly sampled. Flashing images
degrade the experience a video has the ability to provide,
which is the smooth continuity of frames.

Our content-aware dynamic timeline extends the elastic time-
line to solve this problem by decoupling the video speed from
playback speed, and adding content-awareness. Video speed,
Vs, instead is defined to control the average speedup of the
video. In other words, a video speed of 4x indicates the video
would take 1/4th the time to play as a video at normal speed,
1x. Playback speed, in contrast, is the input frame difference
between consecutively played output frames.

The decoupling of video speed and playback speed provides
a degree of freedom we can leverage. While we can achieve
a video speed of 10x simply by having a playback speed of
10x (i.e., the playback includes every 10th frame), we can
also achieve the same video speed of 10x by holding a sin-
gle frame for n playback frame times, say 15 equivalent to
1/2 second of playback time, and then jumping ahead 10n
frames, and repeating. Holding for more than one frame pro-
vides the user a better chance to understand the content, al-
beit at the cost of showing fewer distinct frames.

There is a third option that we chose for our dynamic video
skims. Rather than holding a single frame, we play a short
(1 second) clip of video at a playback speed of 2x, i.e., for a
total of 1/2 second. This is followed by a discrete jump for-
ward to maintain an average of the desired video speed. For
example, if Vs = 10x as in the example above, the 1/2 second
(15 output frames) clip would be followed by a jump forward
of approximately 150 input frames to the next clip. This ap-
proach allows selected clips to be displayed at an intelligible
speed at the cost of throwing away less important informa-
tion, thus providing a smoother experience of skimming the
video. This approach is illustrated in Figure 2.

Selecting Key-Clips via Content Analysis
We still have one more degree of freedom in choosing the ex-
act clip to show after each jump forward. Rather than using

Normal: 1x playback

Playback Time

Normal: 1x playback

Fast Forward: 2x playback

Fast Forward:
>>2x playback

Dynamic Timeline

Video TimeKeyframe Keyframe

Figure 2: The illustration of dynamic timeline. At 1x,
the playback time matches the video time, as illustrated
with the top slope. At 2x, the playback time is half of the
video time. As the video speed exceeds 8x, instead of
naive uniform sampling, the dynamic timeline displays
selects clips to play at 2x. This is followed by a jump
to the next clip, to maintain the desired video speed.

a fixed jump, our timeline improves the online video skim
generation by using the video content analysis results. As il-
lustrated in Figure 3, we first divide the video into coherent
shots (second row from the bottom). Each shot is associated
with a representative keyframe. We create a key-clip of 1
second surrounding each keyframe. Then, instead of jump-
ing ahead a fixed number of frames, we choose the nearest
keyframe to the fixed-distance frame and play the associ-
ated key-clip. A video skim is thus dynamically generated
by chaining selected key-clips together.

Using only the one layer of shot decomposition, however, is
not sufficient to generate a good video skim. Just as we seg-
ment shots from which to choose key-clips, we also cluster
multiple keyframes to create a higher level decomposition.
This process continues to form a hierarchy of key-clips as
shown in Figure 3. The lowest level, L0 of the hierarchy
contains the raw frames. The next level, L1 contains one
key-clip per shot. Each succeeding level of the hierarchy is
formed from the most distinct 1/3rd of the key-clips from
the level below. This hierarchy is used to select the highest
value key-clips for display during a very fast skim.

The dynamic video skim is generated in the following way:
based on the dynamic slider that defines Vs and the passage
of clock time we always have a desired frame time, F ∗.

F ∗ = ΣT
t=0Vs (2)

where T is the total time since starting, and the summation
is taken over each output frame time. F ∗ is the frame that
would be played next in a standard video player. We also
have the most recently played frame, F−1. If the difference
in these is less than 8, then we simply play frame F ∗. In
other words the fastest standard fast-forward is set to 8x, thus
if Vs < 8 then the result is the same as for an elastic slider.

Otherwise, (Vs > 8), we look higher in the hierarchy to select
a key-clip to play. Moving up from L0 to L1 we tentatively
select the closest keyframe to F ∗. If the selected keyframe
involves skipping over any keyframes at L1, in other words if
there are keyframes between F−1 and the chosen keyframe

closest to F ∗, then we move up the hierarchy once again,
and repeat. We again choose the closest keyframe on this
higher level, and check to see that no keyframes at this level
have been skipped over. Once no keyframes are skipped,
or we reach the highest level of the hierarchy, we play the
corresponding key-clip. At the end of this key-clip, time has
passed, thus F ∗ is updated, and the process repeats.

Intuitively, as shown in Figure 3, when the video speed is
high, the skim will be generated from key-clips at higher lev-
els of the hierarchy, thus only very important key-clips will
be chosen to play. When the video speed is low, the skim will
be generated at lower levels of the hierarchy to play more
scenes. If the video speed is low enough when the handle
approaches the mouse pointer, the skim is essentially assem-
bled at the bottom level where every frame is available to be
chosen to display.

Note that in this design some less interesting lower level
shots will be skipped when the video speed is high. How-
ever, since the skims are dynamically generated, when the
user scrolls through the same portion of video at different
speeds, key-clips at different levels will be revealed. This
contrasts with systems that statically define a sequence of
clips to play.

Building the key-clip hierarchy
We leverage existing methods to build the content hierarchy.
We first employ shot boundary detection, using code from
the Compression Project 1. The middle frame in each shot
is selected as its keyframe. We then treat all keyframes as a
shorter video, and apply a color histogram-based clustering
method [8] to compute the next level of the hierarchy such
that it contains 1/3rd the keyframes of the level below. This
process iterates until the whole video is clustered to a sin-
gle shot. Of course our system is not limited to any single
content analysis method. Alternatively, if semantic annota-
tions provided by users are available, they can be used as
constraints for hierarchy construction as well.

RELATED WORK
Many techniques have been proposed to assist users to
quickly browse through a video. One approach is to pro-
vide extra semantic information through additional graphical
elements (e.g. keyframes [4]). In contrast to the work in
this category, we aim to keep the look-and-feel of our slider
control clean and only modify the behavior of the timeline
control itself.

Another body of work for efficient video browsing is cre-
ating video skims. Smartplayer system [1] achieves this by
automatically adjusting playback speed based on the com-
plexity of the current scene, the predefined semantics, and
the learnt user preferences. This approach requires minimal
user interaction, but is not efficient for tasks requiring active
and precise user control, and cannot avoid high frame-rate
fast forward which may cause disorientation. Other systems
pick only “important” or “relevant” video segments to play
at a normal speed, such as [2]. More complex hierarchical
structure of the video content is used in [7] for skim genera-
tion. The video abstraction method embedded in our timeline

1http://compression.ru/video/quality measure/video measurement tool en.html

Level 2 Level 1Level 3 Level 0

Content
hierarchy

Raw
frames

shots

K1 K2 K3 K4

Video time determined
by the elastic function

Keyframes in the
hierarchy

Selected
keyframe to play

Selected keyframe to play if only one
layer of abstraction is available

Figure 3: Dynamic skim generation. This diagram illustrates how different frames will be shown in three conditions (1).
Without content analysis, video frames are sampled based on the video speed, as indicated by the blue arrow pointing
down. (2). With shot segmentation and keyframe extraction, key-clips are selected to form a skim, highlighed by circular
purple dots. Note that K1, K2, K3 and K4 are skipped. (3). Skim generation with a content hierarchy. Key-clips from
different levels are connected together to form a skim, highlighted by red rectangular dots.

falls into this category. However, the major difference be-
tween our approach and previous skimming methods is that
our skim is dynamically created online as the user scrolls
through the video, thus many different skims can be gener-
ated in a single user interaction session.

Direct video manipulation, such as [3] where a user can di-
rectly specify an object’s position in a video frame, works
well for spatial queries in short videos whose visual content
in question appear in most video frames. Such techniques,
while complementary, do not apply to the problem we are
addressing, which is skimming very long unknown videos
with many scene changes.

CONCLUSIONS AND FUTURE WORK

We present a novel dynamic timeline control for efficient
video browsing. Our main contribution is the decoupling of
video speed and playback speed, which allows a meaning-
ful visual abstraction of the video content to be dynamically
created, as users skim through a video. At the same time,
we leverage existing elastic slider techniques to enable high
precision video navigation. The two navigation modes are
smoothly combined in a single timeline control.

Constraining ourselves to a single timeline affordance, we
focus on how to select video frames to display when the user
interacts with the timeline. However, a soundtrack can be
processed in a similar way, to provide an audio abstraction
of the corresponding video shot. In the supplemental video
we show such an example. We are also aware that other visu-
alization techniques can be used to create a visual abstraction
of the video when the video speed is high, such as showing
multiple smaller frames on the play window to give the user
a fast-forward feeling. We plan to explore these possibilities
for further improving the user experience of the system.

During our control’s design and testing periods we were able
to capture preliminary informal user feedback that under-
lined the potential of our dynamic timeline control. We are

now in the early stages of performing quantitative studies
to assess our control’s performance in contrast to traditional
timeline slider controls.

REFERENCES
1. K.-Y. Cheng, S.-J. Luo, B.-Y. Chen, and H.-H. Chu. Smart-

player: user-centric video fast-forwarding. In Proceedings of
CHI, pages 789–798, 2009.

2. F. Coldefy and P. Bouthemy. Unsupervised soccer video ab-
straction based on pitch, dominant color and camera motion
analysis. In Proceedings of ACM Multimedia, pages 268–271,
2004.

3. P. Dragicevic, G. Ramos, J. Bibliowitcz, D. Nowrouzezahrai,
R. Balakrishnan, and K. Singh. Video browsing by direct ma-
nipulation. In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
pages 237–246, New York, NY, USA, 2008. ACM.

4. O.-I. Holthe and L. A. Ronningen. Video browsing techniques
for web interfaces. Consumer Communications and Network-
ing Conference, 2006., 2:1224–1228.

5. W. Hürst. Interactive audio-visual video browsing. In Pro-
ceedings of the 14th annual ACM international conference on
Multimedia, pages 675–678, 2006.

6. W. Hürst, G. Götz, and P. Jarvers. Advanced user interfaces for
dynamic video browsing. In Proceedings ofACM MM, pages
742–743, 2004.

7. S. Lu, I. King, and M. R. Lyu. Video summarization by video
structure analysis and graph optimization. In Proceedings of
ICME, 2004.

8. L. Ott, P. Lambert, B. E. Ionescu, and D. Coquin. Anima-
tion movie abstraction: Key frame adaptative selection based
on color histogram filtering. In Proceedings of ICIAPW, pages
206–211, 2007.

9. G. Ramos and R. Balakrishnan. Fluid interaction techniques
for the control and annotation of digital video. In Proceedings
of UIST, pages 105–114, 2003.

