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Abstract. We propose a combined line segment and elliptical arc detec-
tor, which formally guarantees the control of the number of false positives
and requires no parameter tuning. The accuracy of the detected elliptical
features is improved by using a novel non-iterative ellipse fitting tech-
nique, which merges the algebraic distance with the gradient orientation.
The performance of the detector is evaluated on computer-generated im-
ages and on natural images.
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1 Introduction

The automatic detection of elementary geometric features (line segments, el-
liptical arcs) in images, is as old as computer vision itself [11], being often a
prerequisite for high-level procedures, e.g. see [10]. The task is far from trivial
and many research works addressed it over the decades. Nonetheless, the problem
is not completely settled. Most of the existing detectors, despite the parameter
tuning they demand, provide no control of false detections. Theoretical tools
that guard against false detections exist in the literature [18, 3] and efficient im-
plementations for line segment detection were proposed [3, 8]. The purpose of
this paper is to put in such a theoretical framework the simultaneous detection
of line segments and elliptical arcs, in order to obtain a low-level detector that
requires no parameter tuning, and produces reliable results when applied on any
kind of image, regardless of its size, content, or source.

Existing geometric feature detectors can be roughly classified into two cate-
gories: Hough-based and edge chaining methods. Most of them rely on an edge
detector, e.g. like [1]. The Hough-based algorithms [21] implement variants of
the Hough transform (HT) [11] together with some detection thresholds. HT
accumulates in an array the votes granted by the edge points to each potential
feature. Array points that exceed the threshold become detections. The critical
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parameters involved are the detection thresholds and the quantisation precision
of the accumulator array. Their values –usually empirically tuned– have direct
impact on the number of false detections: too permissive detection thresholds
or too coarse quantisation step introduce false positives, whilst over-restraining
detection thresholds or too fine quantisation step cause false negatives.

A second class of detection methods relies on edge chaining techniques, which
use extensively the geometric properties of the sought features, such as straight-
ness criteria for line segments or curvature properties for ellipses [5, 20]. Usually,
these algorithms begin with a seed pixel (or a group of pixels), and subsequently,
other pixels are added, provided they obey some geometric properties of the
sought feature. At the end, a line (or an ellipse) is fitted on the gathered pixels,
using either some deterministic fitting techniques (e.g. based on least-squares
[6]), or randomised robust RANSAC-like approaches [13]. Although efficient in
execution time (as opposed to Hough-based methods), these algorithms have
difficulties in handling noisy edge maps, reporting an important number of false
detections [5, 2], caused by inappropriate detection thresholds.

A few works have tried to address the detection thresholds issue. In the
Hough class, the progressive probabilistic HT (PPHT), introduced by Matas et
al., stops the voting procedure for a particular feature when an excess is ob-
served in the accumulator that could not have appeared by accident [14]. The
non-accidentalness is assessed by using as detection threshold, a cut-off value on
the probability that the observed excess occurred by chance in a noise image.
This reasoning allows the rejection of false positives. Nonetheless, PPHT lacks
scalability: the cut-off values are set for a predefined image size, and the guard
against false positives is not ensured when larger images are analysed [8]. Simi-
lar reasonings are present in the edge chaining class, based generally on Lowe’s
criterion of significance [12, 20]. Albeit parameter-free, Lowe’s criterion does not
assess the overall non-accidentalness, which causes an incomplete guard against
false detections. The ellipse detector proposed by Chia et al. [2] tackles this
problem by learning detection threshold values on computer-generated images.
Although their results are improved comparing to existing works, their detector
is still dependent on critical parameters: e.g. the learned detection thresholds
favour complete ellipses; they are not able to reject small complete ellipses re-
ported on parasite contours, while falsely rejecting some valid incomplete ellipses.

The formalisation of the false detections control within the feature detection
problem was addressed by some authors: e.g. MINPRAN, proposed by Stewart
for 3D alignment detection [18], but it still needs a parameter tuning.

A successful parameterless approach was introduced by Desolneux et al. [3],
and it is known as the a contrario approach. It provides an efficient technique
for the automatic computation of the detection thresholds based on what they
call Helmholtz’s perception principle; informally, it states that there is no per-
ception in white noise. This comes basically to the non-accidentalness principle,
used also by PPHT and Lowe’s criterion. The major difference is that the a
contrario statistical framework controls the overall number of false detections.
Accordingly, the detection thresholds are self-tuning, guarding efficiently against



false positives. Moreover, in the spirit of the parameter-free quest, Desolneux et
al.’s approach detects geometric features taking as input the original image,
without a previous edge detection step. Using this framework, Grompone von
Gioi et al. proposed an efficient parameterless line segment detector (LSD) [8].

The key contribution of our work is to describe a parameter-free combined
line segment and elliptical arc detector, based on the a contrario approach, which
focuses on the control of false detections. The detector obeys a 3-step scheme:
candidate selection, candidate validation, and model selection. The latter two are
formally sound, being grounded on statistical foundations. Only the candidate
selection is heuristic, for efficiency reasons. Our second contribution is related
to the candidate selection step, where the proposed detector requires the use of
an ellipse fitting operator. We propose a non-iterative fitting technique, which
exhibits improved performance on incomplete data, due to the efficient merge of
the geometric and photometric information available in images.

The remaining paper is organised as follows. Section 2 details the stages
of the proposed feature detector ELSD (Ellipse and Line Segment Detector).
Section 3 presents the ellipse fitting technique used by ELSD and compares it
with other fitting operators. Section 4 reflects experimentally the efficiency and
the robustness of the proposed detector, and section 5 concludes the paper.

2 ELSD – Ellipse and Line Segment Detector

The ELSD algorithm is a three-stage process: (1) first feature candidates are
identified using a heuristic; (2) then each candidate has to pass a validation
phase. Owing to the multiple families of features addressed, (3) a model selec-
tion step is required to choose the best geometric interpretation. The candidate
selection step is based on a greedy (heuristic) approach, in the same spirit as in
LSD. Ideally, to avoid heuristics at this step, all possible candidates should be
considered; but this is impossible in practice, due to time constraints. Therefore
we consider a heuristic free of critical parameters and as permissive as possible,
which does not alter the quality of the result. In contrast, the validation step
is formally sound, being grounded on the probabilistic a contrario approach
proposed by Desolneux et al. [3], which ensures an efficient guard against false
positives. Equally, the model selection step is based on a selection criterion that
follows the principles of the model selection theory. Algorithm 1 gives the main
steps of ELSD.

2.1 Candidate Selection

Due to the a contrario validation, the guard against false positives is ensured.
The false negatives, however, are strictly due to an over-restrictive candidate
selection procedure, i.e. there exist candidates which do not even get the chance
to arrive to the validation phase. Any of the existing feature detectors could
carry out this step. But they usually operate on edge maps and no reliable
parameterless edge detector is yet available. The main feature of the proposed



Algorithm 1: ELSD

Input: Gray-level image x, parameters: none
Output: Lf – list of valid features (line segments, circular arcs, elliptical arcs).

1 grad ← compute gradient(x);
2 foreach pixel pi in x do
3 R← region grow(pi, grad);
4 C ← curve grow(R, grad);
5 line ← fit rectangle(R);
6 circle ← fit circular ring(C);
7 ellipse ← fit elliptical ring(C);
8 (NFAline,NFAcircle,NFAellipse) = NFA(line, circle, ellipse);
9 NFAmin ← min(NFAline,NFAcircle,NFAellipse);

10 if NFAmin ≤ 1 then
11 add feature corresponding to NFAmin in Lf ;
12 end

13 end

candidate selection is to be free of critical parameters and as permissive as
possible, in order to avoid introducing false negatives.

For the line segment part, we use the heuristic proposed for LSD [8], i.e.
starting from seed pixels, a region growing process recursively groups pixels into
connected regions sharing the same gradient orientation up to a given precision
(see figure 1, first row). For the circular and elliptical arcs, we propose a curve
growing procedure that adds a second level of grouping compared to the LSD

Fig. 1. First row: Region growing. Second row: Curve growing.

approach, by simply alternating region growing and region chaining operations.
The ends of the rectangle given by region growing are used as seed pixels, psr



and psl , for subsequent region growing procedures. In LSD, the region growing
chains pixels sharing the same orientation; in ELSD, the curve growing chains
neighbour regions produced by region growing, provided they obey some loose,
elementary constraints, which characterise the elliptical shapes. Namely, we im-
pose that the contour described by the chained regions be convex and roughly
smooth (figure 1, second row). The convexity rule imposes that consecutive
pairs of rectangles turn in the same direction; thus ∆θi and ∆θi+1 have the same
sign. The smoothness rule is roughly imposed by chaining only regions whose
orientations differ by less than π/2.

The curve growing yields a polygonal approximation of the curve through
a recursive scheme. When no more regions can be added, we compute the five
parameters of the ellipse that fits the gathered pixels, using the technique de-
tailed in section 3, as well as the three additional parameters of the elliptical
ring that covers the pixels, namely the delimiting angles and the ring width.
The delimiting angles are computed by sorting the gathered pixels according to
their angular coordinate and taking the extremes, whilst the width is computed
by summing the distances4 of the points that are the farthest from the ellipse
towards the exterior and the interior respectively. Additionally, a circle is fitted
as well, together with the delimiting parameters of the circular ring. This redun-
dancy is justified by the poor accuracy of ellipse fitting techniques when input
data are sampled only along small arcs. In these cases, the curve, even if part of
an ellipse, can be fairly approximated by a circular arc [17].

At the end of this stage, we are in possession of three candidates: the initial
rectangle obtained after the region growing, and the circular and elliptical rings
covering the pixels gathered by curve growing.

2.2 Validation

The main idea in the a contrario validation technique is to automatically com-
pute the detection thresholds in a way that rejects candidates whose presence
might be accidental. We remind the generic validation setup proposed by Desol-
neux et al. for feature detection [3] and then we state the formulation for circle
and ellipse detection.

All along this study, we consider gray-level images of size m× n, defined on
a grid Γ = [1,m] × [1, n] ⊂ N2, with values in R, and we call candidate any
region of pixels c ⊂ Γ , that might support a sought geometric feature. We will
denote by N the total number of possible candidates of a certain type (namely
line segment, circular arc, elliptical arc) in a given image.

Two main ingredients are required within the a contrario framework: (i) a
measure function giving a score to each candidate, reflecting its degree of struc-
turedness, and (ii) a model of unstructured data. A candidate will be validated
if it is too structured to be expected in (ii), according to the measure of (i).

4 We use Rosin’s approximation [17] to compute the Euclidean distance between a
point and an ellipse.



For line segment detection, Desolneux et al. give credit to the orientation of
the gradient, rather than to its magnitude. Hence, the measure function kx(c)
used to assess the degree of structuredness of the candidate c observed in an
image x, is the number of aligned pixels that c contains (figure 2, left). A pixel
p ∈ Γ is said to be aligned with an oriented line segment s up to a precision σ if

Angle(∇x(p), dir⊥(s)) ≤ σπ, (1)

where ∇x(p) is the gradient of the image x at p and dir⊥(s) is the direction
orthogonal to s [3].

Fig. 2. Left: A segment s containing three σ-aligned pixels. Middle and right: Aligned
pixel in circle and ellipse case.

For the proposed algorithm ELSD, additional definitions need to be stated
for circle and ellipse (see figure 2, middle and right). A pixel p ∈ Γ is said to be
aligned with a circular or elliptical arc a up to a precision σ if

Angle(∇x(p), dir⊥(tana(p))) ≤ σπ, (2)

where∇x(p) is the gradient of the image x at p and dir⊥(tana(p)) is the direction
orthogonal to the tangent tana(p) to the circle or ellipse in p.

With this choice for assessing the degree of structuredness, a convenient
unstructured model, that will be denoted as the a contrario H0 model, is one in
which gradient orientations are i.i.d. random variables, i.e.:

1. ∀p ∈ Γ,Angle(∇x(p)) is uniformly distributed over [0, 2π];
2. {Angle(∇x(p))}p∈Γ are independent random variables.

It has been proven by Desolneux et al. that these two assertions hold under
certain conditions of subsampling if x is a Gaussian white noise image [3, p. 67].
From now on, x will refer to the analysed image and X to an (unstructured)
Gaussian white noise image of the same size as x, drawn from the H0 model.

The a contrario model proposed by Desolneux et al. for line segment detection
can be seamlessly applied for ellipse detection as well. Note that H0 is not
meant to model the real noise of images; instead, it is a simple and effective
model for unstructured, isotropic zones of the image, where no aligned structures
are perceived. This model was thoroughly evaluated in [3] and a convincing



agreement was obtained between results of line segment detectors grounded on
this model and human perception.

The following a contrario definition, used jointly with a result from proba-
bility theory (Proposition 1), completes the a contrario validation setup.

Definition 1. Let Z = {Z1, . . . , ZNZ} be a set of NZ integer random variables.
Observing a value zi for Zi is an ε-meaningful event in Z if its associated number
of false alarms, defined by NFA = NZP [Zi ≥ zi], is less than or equal to ε.

Proposition 1. The expected number of ε-meaningful events in Z is less than
or equal to ε.

Proof. We define the set of thresholds κi = min{z ∈ N | NZP [Zi ≥ z] ≤ ε}.
With this definition, an observed value zi is ε-meaningful if and only if zi ≥ κi.
Then, the subset of elementary ε-meaningful events associated to Zi is {Zi ≥ κi},
and the expected overall number of ε-meaningful events in Z is given by

E

[
NZ∑
i=1

1{Zi≥κi}

]
=

NZ∑
i=1

P [Zi ≥ κi] ≤
NZ∑
i=1

ε

NZ
= ε.

In our case, we deal with the events of observing in image x candidates ci,
containing kx(ci) aligned pixels. A candidate ci is considered a valid detection
and said to be ε-meaningful, in agreement with Definition 1, when its associated
number of false alarms NFA(ci, x) = NP [kX(ci) ≥ kx(ci)] satisfies the validation
test :

NFA(ci, x) ≤ ε . (3)

Thus, the set Z corresponds to the N random variables kX(ci) and NFA reflects
the probability of observing in a random image X (of the same size as x) candi-
dates at least as structured as the analysed one. The smaller the NFA, the more
unlikely is ci to appear in an image X drawn from H0; thus, it is meaningful.

Thanks to Proposition 1, the expected number of candidates in an unstruc-
tured image X with at least the same degree of structuredness as in the analysed
image x is ensured to be (statistically speaking) less than ε. In other words, if
a candidate is accepted as valid detection when the equation (3) holds, then the
number of accidental detections, which are in fact false positives, is guaranteed
to be less than the chosen ε. This result reflects precisely the formalisation of
Helmholtz’s perception principle, which states that in an unstructured image,
only a very small number of detections should be reported.

In practice, ε can be set as small as desired. As it is proven in [3, p. 77],
the threshold values κi = min{k ∈ N | NP [kX(ci) ≥ k] ≤ ε}, such that the
candidates ci are ε-meaningful when kx(ci) ≥ κi (using a similar reasoning as in
the above proof), have a logarithmic dependence on ε; thus a simple, convenient
value can be assigned to ε. The value ε = 1 yielded satisfactory results [8], so it
will be kept for the proposed detector as well. With this choice, we assume the
risk of accepting on average one false positive per image. Considering the weak
dependence on the unique detection threshold ε fixed to 1, the approach can be
considered as parameterless.



If the angular precision for declaring a pixel as aligned is πσ, then the prob-
ability for a pixel to be aligned under the a contrario model is 2πσ

2π = σ. Since
the gradient orientations are independent under the chosen model, kX(c) fol-
lows a binomial law with parameters l(c), kx(c), and σ, where l(c) is the total
number of pixels in the rectangle or ring. Therefore, we can write NFA(c, x) =

NB(l(c), kx(c), σ), with B(l, k, σ) =
∑l
i=k

(
l
i

)
σi(1− σ)l−i being the binomial tail.

For σ we set the value 1/8, which proved to be satisfactory in practice [8].

Fig. 3. Degrees of freedom for line segment, circular arc, and elliptical arc.

Considering a one pixel precision, in the line segment case, the number of
potential candidates in an m× n image is Nline = (mn)5/2, as each rectangular
region has five degrees of freedom: centre (2), length (1), orientation (1), and
width (1); see figure 3 left. We count (mn)1/2 possible values for each degree of
freedom. For circular arcs we have Ncircle = (mn)3 for six degrees of freedom:
centre (2), radius (1), width (1), and delimiting angles (2); see figure 3 middle.
Finally, elliptical arcs have eight degrees of freedom: centre (2), axes (2), orienta-
tion (1), width (1), and delimiting angles (2), thus Nellipse = (mn)4; see figure 3
right. These estimates count roughly all the possible combinations of pixels that
could support a feature in the given image and they allow the detection thresh-
olds to adapt to the image size. But in practice, only the candidates proposed
by the candidate selection step will be analysed, for efficiency reasons.

All-in-all, with the chosen value for ε and the estimates for the number
of candidates, the tests that the feature candidates must pass in order to be
considered valid detections are:

NFAline = (mn)5/2B(l, k, σ) ≤ 1 for line segments,
NFAcircle = (mn)3B(l, k, σ) ≤ 1 for circular arcs,
NFAellipse = (mn)4B(l, k, σ) ≤ 1 for elliptical arcs.

(4)

2.3 Model Selection

The candidates declared meaningful in the validation step compete subsequently
in a model selection phase for the best interpretation for the given data and the
winner is kept as final valid detection. The model selection theory is a central
subject in statistical learning and an important number of model selection crite-
ria is available in the literature [4]. The proposed detector ELSD entails a model



selection step within a linear regression problem: given a set of pixels in an im-
age, and three fitted models (line, circle, ellipse), decide which model is the most
suitable to explain the data. We choose to use the NFA of a candidate as model
selection criterion, i.e. the candidate possessing the smallest NFA is considered
as most meaningful, and kept as final valid detection. This idea was suggested
by Desolneux et al. [3, p. 245], but not carried out. The pertinence of this usage
needs a thorough discussion. Due to space limitation, here we only point out
that, qualitatively, NFA follows the Ockham’s razor principle which guides the
model selection theory, namely it contains a term illustrating the goodness of fit
(the binomial tail) and a term penalising for complexity (the number of candi-
dates N , proportional with the number of free parameters). We refer the reader
to [16] for more details on this topic.

3 Conic Fitting Using Gradient Orientations

The candidate selection of ELSD relies on a conic fitting technique, restricted to
the cases of circle and ellipse. Addressing circular and elliptical arcs, we seek for
a closed-form solution that performs well on those being small or incomplete.
Let C be a general conic represented in homogeneous matrix form by:

p̃>Cθp̃ = 0, (5)

where Cθ is the order-3 symmetrical matrix of conic (homogeneous) coefficients,
stacked in the vector θ6×1 (six coefficients with five degrees of freedom), and
p̃ = (x y 1)> is the vector of augmented Cartesian coordinates of a point.

Given n points, we consider the problem of fitting to the data an ellipse mod-
eled by an implicit equation of the form (5). The fitting comes to minimising
in a least-squares sense the objective function F =

∑n
i=1 δ

2(θ, p̃i), subject to
h(θ) = 0, where δ(θ, p̃i) = p̃>i Cθp̃i is the error-of-fit between the input points
and the estimated conic, and h(·) models different constraints that need to be
imposed on the conic coefficients to avoid the trivial solution or/and to ensure
ellipticity [6]. Several authors proposed weighting schemes to improve the per-
formance on incomplete data, where this technique has the tendency to grossly
underestimate the eccentricity [19].

A few works have tried to put forward the usefulness of the derivative con-
straint entailed by the gradient orientation. Förstner and Gulch use exclusively
the gradient orientation to accurately locate the centre of a circle, which cor-
responds to the intersection point (computed in a least-squares sense) of the
lines supporting the gradient vectors of the pixels situated on the contour of the
circle. This is due to the fact that these lines all converge towards the centre
of the circular shape [7]. The radius can be computed subsequently using the
positional constraints. Guennebaud and Gross applied Förstner’s idea in 3D for
sphere fitting, in a computer graphics application [9]. In the ellipse case, this
idea cannot be seamlessly applied, as the lines supporting the gradient vectors
of the pixels situated on the ellipse contour do not converge towards the ellipse
centre. To overcome this, Ouellet and Hebert perform the ellipse fitting in the



dual space [15], but their formulation omits useful information, namely the posi-
tional constraints. All these methods improve the fitting results while remaining
computationally efficient, but they still lack accuracy on incomplete data.

We suggest that the simultaneous usage of the positional and tangential
information can further improve the results. Accordingly, the fitting problem
writes as: minθ

∑n
i=1(δ2(θ, p̃i) + γ2(θ, p̃i,gi)), subject to h(θ) = 0, where γ(·)

returns the error-of-fit on the gradient orientation, and gi denotes the 2-vector
of the image gradient at (xi, yi). To obtain the expression of γ(·), we make use of
the pole-polar duality, given by Cp̃ ∼ l, where ∼ denotes the projective equality
[10]. The point with vector p̃ is called the pole of the line l w.r.t. the conic C, and
conversely, the line with vector l is the polar of p̃. Given a point p̃ belonging to
C and with gradient vector g = (g1, g2)>, its polar l is tangent to C at p̃ and is
orthogonal to any line with direction g. Thus, the point at infinity (denoted by
g̃⊥∞) associated to the direction orthogonal to g lies on l, that is: l>g̃⊥∞ = 0. If

one assumes that the camera has square pixels, then g̃⊥∞ = (−g2, g1, 0)
>

. Using
the pole-polar duality, we obtain a new equation, linear in the elements of Cθ:

p̃>Cθg̃⊥∞ = 0 . (6)

Together with the positional constraints (5), the linear equation system becomes:{
p̃>i Cθp̃i = 0
p̃>i Cθg̃⊥∞i

= 0
i = {1, . . . , n} . (7)

This way, each point contributes with two independent equations. This tech-
nique can be seamlessly applied to both circle and ellipse fitting. To improve the
numerical stability, the input data are first normalised as described in [10].

Fig. 4. Mean relative error on the estimated radius for 200 tests performed on real
images of printed drawn circles. Input data are sampled along arcs of ∼ 45 degrees.

To show the improvement obtained by using simultaneously the positional
and the tangential constraints, we compared the proposed method with Taubin’s
circle fitting operator [19], which uses only positional constraints, and with Guen-
nebaud and Gross’s method [9] mentioned above (denoted GG in figure 4). The



Table 1. Mean(Max) error on the estimated centre, for 500 tests performed on
computer-generated images; input points are sampled along incomplete ellipses gen-
erated randomly, with axes values in the range 10 – 100 pixels.

Method 75% of contour 50% of contour

Proposed 0.1136(0.4465) 0.5972(4.8615)
Ouellet 0.2018(1.0942) 3.4944(8.3421)

results of the three methods on incomplete data are shown in figure 4. Table 1
presents a comparison with Ouellet and Hebert’s method [15], in fitting ellipses
on incomplete data. This comparative study shows that when input data are
sampled along incomplete conics, and especially when the features are small, it
is crucial to exploit simultaneously all the information they possess.

4 Results

Fig. 5. Results on computer-generated images of geometric shapes (square, circle, el-
lipse) for different noise types and different scales. From top to bottom: original image,
ELSD, Etemadi, HC, HE. From left to right: noise-free image, image altered by Gaus-
sian noise, overlapping shapes, overlapping shapes altered by salt-and-pepper noise,
overlapping shapes-normal scale, overlapping shapes-reduced scale.



The proposed detector was extensively tested on various (computer-generated
and natural) images. Its performance is compared with relevant feature detectors
available online: Etemadi’s detector [5], which addresses the simultaneous detec-
tion of line segments and circular arcs, and Hough detectors for circles (HC) [21]
and ellipses (HE) [21], respectively. All detectors were tested with their default
parameters. The edge maps were obtained using Canny’s edge detector available
in Matlab, with default parameters. The tests carried out on computer-generated
images of overlapping and non-overlapping geometric shapes, analysed the ro-
bustness against noise, and the precision at different scales. Figure 5 illustrates
the typical behaviour of the above detectors when applied on these test images.
Generally, Etemadi’s detector is accurate in reporting the correct detections (line
segments and circular arcs), but has no ability in eliminating false positives, re-
ported on parasite contours. Equally, its precision at reduced scale is poor. The
two Hough-based detectors behave reasonably well as long as the images are
noise-free. When noise is present, they encounter serious difficulties and the re-
sults are not satisfactory: HC reports an important number of false positives,
whereas HE reports no detection. The proposed detector gives reasonable re-
sults in all these cases: it is accurate when applied on noise-free images, even at
reduced scale, due to the enhanced conic fitting used; the noise (especially salt-
and-pepper) provokes an over-segmentation of contours, but no false positive is
reported, which reflects the validity of ELSD’s theoretical grounds.

In order to assess the behaviour of the proposed detector in real-world ap-
plications, we have extensively tested it on natural images. Unfortunately, the
literature lacks an appropriate benchmark with labeled images for evaluating
geometric feature detectors. We downloaded one thousand images from flickr
and used them as test images. Figure 6 gives some relevant results. The source
code and an online demo of ELSD, where users can upload images and test the
detector, can be found at http://ubee.enseeiht.fr/vision/ELSD/. A full de-
scription of the detector is given in [16]. The current limitations of ELSD are
shown in figure 5, 4th column, and figure 6, last row. For the former case, a merg-
ing step should be implemented to overcome the contour over-segmentation due
to noise [2]. The latter case illustrates the behaviour of the model selection step,
when we deal with polygonal shapes that can be fairly approximated by curves.
To improve the accuracy, polygonal candidates should be considered as well.

5 Conclusion

We proposed a parameterless line segment and elliptical arc detector, grounded
on the a contrario approach, which controls the number of false positives. Ad-
dressing multiple feature families (line segments, circular and elliptical arcs),
the proposed detector entails a model selection step. The essential quantity of
the a contrario approach –NFA– is used for both validation and model selection
purposes. To improve the accuracy of occluded shapes detection, a non-iterative
circle and ellipse fitting technique was introduced; it uses simultaneously the
positional and the tangential information of the image pixels. Future work will



Fig. 6. Results on natural images. 1st column: original image, 2nd column: ELSD, 3rd
column: Etemadi, 4th column: HC. HE reported no detection. Image size and ELSD’s
execution time on a regular machine for each example from top to bottom: 213× 279
0.3s, 445× 304 1s, 640× 480 0.4s, 1600× 1200 1.3s, 442× 450 0.6s, 1600× 1200 3.1s,
612× 563 0.1s.



concentrate on the merging of elliptical arcs to obtain precise ellipses in case of
fragmented contours, and on the model selection phase, to improve its accuracy.
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